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Announcements before Class
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 Supplementary Exercise Codes

 For some knowledge (e.g., computing normalized image coordinates and computing the 
relative camera pose from the absolute camera pose), our exercise sessions do not involve 
them due to time and space limit. 

 As compensation, we are preparing some MATLAB codes to help you review some 
important knowledge that is not covered by our exercise sessions but is still highlighted in 
our review document (for Chapters 01--05). 

 Please note that it is optional for you to check these codes.

 For details, please refer to 
https://www.moodle.tum.de/mod/forum/discuss.php?d=431822

https://www.moodle.tum.de/mod/forum/discuss.php?d=431822
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 Update about Exercise Session Schedule

 For 2D-2D Geometry, we originally intend to introduce basic configuration (two views) 
and a more complex configuration (multiple views).

 Due to time limit, we skip the case of multiple views (last year, Prof. Cremers also 
skipped this part).

 Our lecture schedule remains unchanged. However, we cancel the Exercise 7.
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 Notations and Formulas

 Problems
There are some inconsistent symbols in slides (e.g., intrinsic parameters).
Some equations and formulas are in the image format.

 Reasons
Some equations are copied from different academic papers. 

 Solutions
We are adjusting notations and formulas. Due to limited time, the progress is relatively slow. 
If some of them affect your understanding, please let me know (via email or Moodle) and I 
will prioritize their update.
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 Correction for Rank Analysis (Tsai’s Method) 

 𝑄𝑄 (2𝑛𝑛×12) should have rank 11 to have a unique (up-to-scale) non-zero solution of vector 
𝑀𝑀. If rank equals 12, we only have zero solution.

 Dimension of null space is 1. Vector M can be expressed by a single basis vector multiplied 
by an arbitrary scalar.

 Please refer to the updated page 14/48 of Chapter 04.

12-dimensional vector
(unknown)

2n*12 matrix
(known)
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 QR Decomposition

 Assume that we have computed M matrix based on DLT. We aim to recover intrinsic 
matrix K, rotation matrix R, and translation vector t.

 First step: re-write the right-hand side based on distributive law

 Second step: use RQ decomposition to decompose the known            to obtain K and R.
Note: QR decomposition is a generic term that may refer to QR, QL, RQ, and LQ 
decompositions, with L being a lower triangular matrix. 
(https://en.wikipedia.org/wiki/QR_decomposition#Relation_to_RQ_decomposition)

 Third step: compute t based on the known          and the estimated K. 

Explanation for Tsai’s Method

https://en.wikipedia.org/wiki/QR_decomposition#Relation_to_RQ_decomposition
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 Five-point Method
 Pose Recovery from Essential matrix
 1D Correspondence Search

Today’s Outline

01/28
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Five-point Method
 Review on Rank and Null Space

 An example
Computing a 3D direction L orthogonal to normal N

<N, L>=0 

L

NTL=0 
Dot product A linear system

{b1, b2}
Basis of null space

b1

b2

Num(unknowns) = Rank(N) + Dim(null space)

13 2

N: 1*3

02/28

i.e., dimension of L
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Five-point Method
 Two Properties of Essential Matrix

 Recap on definition of essential matrix

 Properties of essential matrix

Scalar

3*3 zero matrix

Properties will not be asked in the exam 03/28
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Five-point Method
 Revisiting Eight-point Method

 Linear System  Definition of E matrix

• R has three degrees of freedom
• T has two degrees of freedom
• E has five degrees of freedom
• Rank of Q equals five

Dim(e) =      Rank(Q)  +  Dim(null space)
59 4

N*9

9*1

• Each correspondence can provide one constraint.
• The minimal case of Q is 8*9 if we neglect the inherent 

constraints of elements of e. 
• The minimal case is 5 correspondences if we consider these 

constraints. (we no longer solve a linear system) 04/28

5*9
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Five-point Method
 Polynomial Generation

 Basis of null space

 Linear expression of vector e

 Constraints of E matrix

Dim(null space) = 4

w= 1

1 constraint 9 constraints (only two of them are linear independent)

A polynomial system with 
respect to unknown x, y, 
and z

x, y, z are unknown coefficients

Known 9D basis vectors computed based on the known 5*9 coefficient matrix 

05/28
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Five-point Method
 Polynomial Generation

 Polynomial System

A p = 0

Known coefficient matrix

Unknown vector with respect to x, y, z

A 10-th degree univariate 
polynomial with respect to z

W= 1
10 rows (10 equations) Computed coefficients

Solving this non-linear system will not be 
asked in the exam 06/28
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 Essential Matrix Decomposition

 Assume that we have obtained an essential matrix E. Recall that essential matrix E 
encodes the camera pose information. We aim to recover rotation and translation from 
the matrix E.

 Recap on singular value decomposition

Pose Recovery from Essential matrix

T = U Σ V-1

Composed of orthogonal basis vectors 07/28
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 Essential Matrix Decomposition

 Lemma: singular value of 3*3 Essential matrix satisfies the form 
We do not provide proof here. If you have interest, you can check the reference [1]

 Decomposition of essential matrix E
Mathematical and geometric forms

Pose Recovery from Essential matrix

[1] “Multiple View Geometry in Computer Vision”: R. Hartley and A. Zisserman
Link: https://www.robots.ox.ac.uk/~vgg/hzbook/

Geometric form
Mathematical form

08/28

https://www.robots.ox.ac.uk/%7Evgg/hzbook/
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 Essential Matrix Decomposition

 Can we directly extract R and t from SVD result?

 Rewrite         by matrix multiplication (not unique)

Pose Recovery from Essential matrix

Skew-symmetric matrix

We cannot directly extract t and R
(no skew-symmetric matrix)

09/28

We have to further 
transform it
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 Essential Matrix Decomposition

 Decomposition of essential matrix

Pose Recovery from Essential matrix

Introducing an identity
matrix for derivation

Skew-symmetric matrix

Decomposition of SVD of E

10/28

Associative law
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 Essential Matrix Decomposition

 Rotation and translation results

Pose Recovery from Essential matrix

Translation 
Rotation

Columns 

Matrix

11/28

3*1 vector

-
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 Essential Matrix Decomposition

 Another decomposition of        leads to another result

Pose Recovery from Essential matrix

Another rotation and translation results

12/28

Previous decomposition
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 Essential Matrix Decomposition

 A more concise expression of rotation and translation

Pose Recovery from Essential matrix

Rotation along the z-axis 
(introduced before)

Translation 
derived before

Defined before 
(eigen values)

=

=

Rotation derived before

13/28
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 Essential Matrix Decomposition

 Four possible solutions: There exists only one solution where points are in front of both 
cameras

Pose Recovery from Essential matrix

3D reconstruction will be 
introduced in the next class

Different 
translations

Different 
rotations Different 

rotations and 
translations

14/28
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 Application of Fundamental Matrix

 Can 𝑅𝑅, 𝑇𝑇, 𝐾𝐾1, 𝐾𝐾2 be extracted from F?
• In general we cannot achieve this since infinite solutions exist
• However, if the coordinates of the principal points of each camera are known and the 

two cameras have the same focal length 𝑓𝑓 in pixels, then 𝑅𝑅,𝑇𝑇,𝑓𝑓 can determined 
uniquely.

• This is an advanced knowledge. We will not introduce it in our class.

Pose Recovery from Essential matrix

15/28
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 Application of Fundamental Matrix

 If we do not use Fundamental matrix to recover camera pose, what is its application?
• We do not need to normalize image points.
• We can use consensus constraint w.r.t. fundamental matrix to remove outliers.

Pose Recovery from Essential matrix

16/28



Computer Vision Group

1D Correspondence Search
 Overview

 Reviewing drawback of brute-force matching
 1D search based on epipolar constraint (application of epipolar lines)

17/28
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1D Correspondence Search
 Review and Motivation

Given a point, 𝑝𝑝𝐿𝐿, in the left image, how do we find its correspondence, 𝑝𝑝𝑅𝑅, in the right image?
A straightforward strategy is brute-force matching (search) strategy.

18/28
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1D Correspondence Search
 Review and Motivation

Brute-force Matching: compare each candidate patch from the image with all possible 
candidate patches from the right image.

19/28
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1D Correspondence Search
 Review and Motivation

This 2D exhaustive search is computationally very expensive! 

20/28
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1D Correspondence Search
 Problem Formulation

 Can we make the correspondence search 1D?
• The epipolar line is the projection of a back projected ray 𝜋𝜋−1(𝑝𝑝) onto the other camera image
• Potential matches for 𝒑𝒑 have to lie on the corresponding epipolar line 𝒍𝒍’

21/28

𝒑𝒑
𝒑𝒑’



Computer Vision Group

1D Correspondence Search
 Problem Formulation

 Corresponding points must lie along the epipolar lines: this constraint is called epipolar
constraint.

 The epipolar constraint reduces correspondence problem to 1D search along the 
epipolar line.

22/28
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1D Correspondence Search
 Problem Formulation

Thanks to the epipolar constraint, corresponding points can be searched for along epipolar
lines. Accordingly, the computational cost reduced to 1 dimension.

23/28
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1D Correspondence Search
 Example Configurations of Epipolar Lines

Fundamental: All the epipolar lines intersect at the epipole

Basis of epipolar geometry
Rotation axis, i.e., 
baseline

Epipolar plane

24/28

Intersection
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1D Correspondence Search
 Example 1: Converging Cameras

 A classical case (non-parallel principal axes)
As the position of the 3D point P changes, the epipolar lines rotate about the baseline

25/28
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1D Correspondence Search
 Example 2: Identical and Horizontally-Aligned Cameras

 A special case (principal axes are parallel, and orthogonal to moving direction/baseline)
Parallel epipolar lines do not intersect (or, the intersection lies at the infinity).

26/28
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1D Correspondence Search
 Example 3: Forward Motion 

 Another special case (principal axes are aligned to moving direction)
Epipolar lines radiating from the epipole (coordinates remain unchanged)

Camera centers

Epipoles

Image plane

Image plane

Baseline

1. Epipolar
planes

Epipoles

2. Corresponding epipolar lines

Epipolar lines

27/28
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 Five-point Method
 Pose Recovery from Essential Matrix
 1D Correspondence Search

Summary

28/28
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Thank you for your listening!
If you have any questions, please come to me :-)
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