## Computer Vision II: Multiple View Geometry (IN2228)

Chapter 06 2D-2D Geometry
(Part 3 3D Reconstruction)

Dr. Haoang Li

14 June 2023 12:00-13:30


## Announcement Before Class

## > Updated Lecture Schedule

For updates, slides, and additional materials:
https://cvg.cit.tum.de/teaching/ss2023/cv2

## 90-minute course; 45-minute course

$\left.\begin{array}{l}\text { Wed 19.04.2023 Chapter 00: Introduction } \\ \text { Thu 20.04.2023 Chapter 01: Mathematical B } \\ \text { Wed 26.04.2023 Chapter 02: Motion and Sc } \\ \text { Thu 27.04.2023 Chapter 02: Motion and Sce } \\ \text { Wed 03.05.2023 Chapter 03: Image Formati } \\ \text { Thu 04.05.2023 Chapter 03: Image Formatio } \\ \text { Wed 10.05.2023 Chapter 04: Camera Calibra } \\ \text { Thu 11.05.2023 Chapter 05: Correspondence } \\ \text { Wed 17.05.2023 Chapter 05: Correspondenceliday) } \\ \text { Thu 18.05.2023 No lecture (Public Holiday } \\ \text { Wed 24.05.2023 No lecture (Conference) } \\ \text { Thu 25.05.2023 No lecture (Conference) }\end{array}\right\}$

Videos and reading materials
Wed 24.05.2023 No lecture (Conference)
Thu 25.05.2023 No lecture (Conference) about the combination of deep earning and multi-view geometry

> | Wed 31.05.2023 Chapter 05: Correspondence Estimation (Part 3) |
| :--- |
| Thu 01.06.2023 Chapter 06: 2D-2D Geometry (Part 1) |
| Wed 07.06.2023 Chapter 06: 2D-2D Geometry (Part 2) |
| Thu 08.06.2023 No lecture (Public Holiday) |
| Wed 14.06.2023 Chapter 06: 2D-2D Geometry (Part 3) |
| Thu 15.06.2023 Chapter 06: 2D-2D Geometry (Part 4) |

Wed 21.06.2023 Chapter 07: 3D-2D Geometry
Thu 22.06.2023 Chapter 08: 3D-3D Geometry
Wed 28.06.2023 Chapter 09: Single-view Geometry
Thu 29.06.2023 Chapter 10: Combination of Different Configurations

Wed 05.07.2023 Chapter 11: Photometric Error (Direct Method)
Thu 06.07.2023 Chapter 12: Bundle Adjustment and Optimization
Wed 12.07.2023 Chapter 13: Robust Estimation
$\qquad$
Advanced topics and 13.07.2023 Question Explanation and knowledge Review high-level tasks
Wed 19.07.2023 Chapter 14: SLAM and SFM (Part 2)
Thu 20.07.2023 Chapter 14: SLAM and SFM (Part 1)

## Today's Outline

$>$ Overview of 3D Reconstruction
$>$ Triangulation (General Case)
> Stereo Vision (Simplified Case)

## Overview

## > Intuitive Illustration

$\checkmark$ Goal: recover the 3D structure by computing the intersection of corresponding rays.
$\checkmark$ Working principle of human eye: Objects projected on our retinas are up-side-down, but our brain makes us perceive them as upright objects.


## Overview

## > Input and Output




Estimated poses and 3D structure

## Overview

## > Classification

$\checkmark$ General case (for sparse reconstruction)

- Triangulation

General case
(non identical cameras and not aligned)


## Overview

## > Classification

$\checkmark$ Simplified case (for dense reconstruction)

- Depth from disparity

Simplified case
(identical cameras and aligned)
virtual


## Triangulation

## > Overview

$\checkmark$ Prior information

- Extrinsic parameters (relative rotation and translation) obtained by epipolar constraint (or the other methods, e.g., PnP and ICP).
- Intrinsic parameters (focal length, principal point of each camera). We can obtain them by using a calibration method e.g., Tsai's method or Zhang's method.



## Triangulation

## > Overview

$\checkmark$ Definition
Triangulation is the problem of determining the 3D position of a point given a set of corresponding 2D points and known camera poses.


## Triangulation

## > Overview

$\checkmark$ Definition
We want to intersect the two projection rays corresponding to $p_{1}$ and $p_{2}$. Because of noise and numerical errors, two rays won't meet exactly, so we can only compute an approximation.


## Triangulation

## > Basic Constraints

In the left camera frame, we have the perspective projection constraints:

We express 3D point in the left camera frame.

## Left camera:

$$
\lambda_{1}\left[\begin{array}{c}
u_{1} \\
v_{1} \\
1
\end{array}\right]=K_{1}\left[[I \mid 0] \cdot\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]\right.
$$



## Triangulation

## > Basic Constraints

We generate the system of equations of the left and right cameras:


## Triangulation

> Least Square Approximation

$$
\left[\mathbf{a}_{\times}\right]=\left[\begin{array}{ccc}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right]
$$

We get a homogeneous system of equations

Left camera: $\quad 0=p_{1} \times M_{1} \cdot P \quad \Rightarrow\left[p_{1 \times}\right] \cdot M_{1} \cdot P=0$
Unknown
Right camera: $\quad 0=p_{2} \times M_{2} \cdot P \quad \Rightarrow\left[p_{2 \times}\right] \cdot M_{2} \cdot P=0$

Two independent linear constraints

Two independent linear constraints

We get a homogeneous system of equations.
Mathematically, 3D point $\boldsymbol{P}$ can be determined using SVD.

## Triangulation

## > Least Square Approximation

Geometrically, $\boldsymbol{P}$ is computed as the midpoint of the shortest 3D line segment connecting the two lines.


## Triangulation

## > Follow-up Non-linear Optimization (Optional)

$\checkmark$ Initialize $\boldsymbol{P}$ using the least square approximation introduced before
$\checkmark$ Refine $P$ by minimizing the sum of left and right squared re-projection errors:
$\checkmark$ We can only optimize 3D point, or jointly optimize pose and 3D point.

$$
P=\operatorname{argmin}_{P} \quad\left\|p_{1}-\pi\left(P, K_{1}, I, 0\right)\right\|^{2}+\left\|p_{2}-\pi\left(P, K_{2}, R, T\right)\right\|^{2}
$$



## Triangulation

$$
P=\operatorname{argmin}_{P}\left\|p_{1}-\pi\left(P, K_{1}, I, 0\right)\right\|^{2}+\left\|p_{2}-\pi\left(P, K_{2}, R, T\right)\right\|^{2}
$$

## > Non-linear Optimization

The reprojection error can be minimized using Levenberg-Marquardt (more robust than Gauss-Newton method to local minima)
The gradient-descent algorithms will be introduced in the future.


## Stereo Vision

## > Overview

$\checkmark$ Input: known extrinsic camera parameters measured/calibrated beforehand
$\checkmark$ Main knowledge

- Disparity and Depth
- Stereo Rectification
- Dense Correspondence Establishment (introduced in the next class)


Disparity and depth
Stereo rectification

## Stereo Vision

## > Disparity and Depth

$\checkmark$ Intuitive illustration

- Our brain allows us to perceive disparity (displacement vector of a point) from the left and right images.
- Depth is inversely proportional to the disparity.



## Stereo Vision

## $>$ Disparity and Depth

$\checkmark$ Mathematical computation
Assume that both cameras are identical (i.e., have the same intrinsic parameters) and are aligned to the $x$-axis.


From Similar Triangles:

$$
\begin{aligned}
& \frac{f}{Z_{P}}=\frac{u_{l}}{X_{P}} \\
& \frac{f}{Z_{P}}=\frac{-u_{r}}{b-X_{P}} \\
& \text { Disparity }
\end{aligned}
$$

difference in image location of the projection of a 3D point on two image planes

[^0]centers of the two cameras

## Stereo Vision

## > Disparity and Depth

$\checkmark$ Mathematical computation
Once the stereo pair is rectified, the disparity and depth of each point can be computed.

$$
\begin{aligned}
& \quad \text { Baseline }_{Z_{P}}=\frac{b f}{\text { Focal length }} \\
& u_{l}-u_{r} \text { Disparity }
\end{aligned}
$$



## Stereo Vision

## $>$ Disparity and Depth

$\checkmark$ What's the optimal baseline?

Large baseline:


- Advantage: Small depth error
- Disadvantage: Difficult search problem for close objects (projection may be outside the right image)


## Small baseline:

- Advantage: Large depth error
- Disadvantage: Cons: Easier search problem for close objects

$$
Z_{P}=\frac{B f}{u_{l}-u_{r}}
$$



Outside the FOV of right camera


## Stereo Vision

## > Stereo Rectification

## $\checkmark$ Motivation

- In our previous derivations, we assume that the image pairs have been rectified.
- Even for a commercial stereo camera, the left and right images are never perfectly aligned.
- In practice, it is convenient if the epipolar lines are aligned to the horizontal scanlines because the correspondence search can be very efficient (only search the point along the same scanlines).



## Stereo Vision

## > Stereo Rectification

$\checkmark$ Definition

- Stereo rectification warps the left and right images into new "rectified" images such that the epipolar lines coincide with the horizontal scanlines.



## Stereo Vision

## > Stereo Rectification

## $\checkmark$ Overview

- Warps the original image planes onto a (virtual) planes parallel to the baseline
- It works by computing two transformations, one for each image
- As a result, the new epipolar lines $\not$ qre aligned to the horizontal
scanlines.

Such a transformation describes 2D coordinate transformation.
If an image plane is transformed in 3D, a 2D projection point's coordinates are
 changed accordingly.

## Stereo Vision

## > Stereo Rectification

$\checkmark$ Pipeline

- We define two new matrices to rotate the old image planes respectively around their optical centers. The new image planes become coplanar, and are both parallel to the baseline.
- This ensures that epipolar lines are parallel.

- To have horizontal (not just parallel) epipolar lines, the baseline must be parallel to the new $X$ axis of both new camera frames.



## Stereo Vision

## > Overview

$\checkmark$ Pipeline

- In addition, to have a proper rectification, corresponding points must have the same $y$-coordinate (row ID). This is obtained by requiring that the new cameras have the same intrinsic parameters.
- In other words, the displacement of a 2D point in the image is only caused by extrinsic parameters (relative pose of camera).



## Stereo Vision

## $>$ Detailed Procedures (Step 1)

$\checkmark$ Recap on perspective projection
The perspective equation for a point $P_{w}$ in the world frame is defined by the following equation, where $R=R_{c w}$ and $T=T_{c w}$ transform points from the World frame to the Camera frame.

$$
\lambda\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=K\left(R\left[\begin{array}{l}
X_{w} \\
Y_{w} \\
Z_{w}
\end{array}\right]+T\right)
$$



## Stereo Vision

$$
Y=R X+t \quad \measuredangle \quad X=R^{T}(Y-t)=R^{T} Y-R^{T} t
$$

$>$ Detailed Procedures (Step 1)
$\checkmark$ For Stereo Vision, however, it is more common to use $\boldsymbol{R} \equiv \boldsymbol{R}_{\boldsymbol{w} \boldsymbol{c}}$ and $\boldsymbol{T} \equiv \boldsymbol{T}_{\boldsymbol{w} \boldsymbol{c}}$, where now $\boldsymbol{R}$, and $T$ transform points from the Camera frame to the World frame.
$\checkmark$ This is more convenient because $\boldsymbol{T}=\boldsymbol{C}$ directly represents the coordinates of the camera center in the world frame (see page 17/57 of Chapter02 Part1).
$\checkmark$ The projection equation can be re written as:

$$
\begin{aligned}
\lambda\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=K\left(R\left[\begin{array}{l}
X_{w} \\
Y_{w} \\
Z_{w}
\end{array}\right]+T\right) \longrightarrow & \lambda\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=K R^{-1}\left(\left[\begin{array}{l}
X_{w} \\
Y_{w} \\
Z_{w}
\end{array}\right]-T\right) \\
& \rightarrow \lambda\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=K R^{-1}\left(\left[\begin{array}{l}
X_{w} \\
Y_{w} \\
Z_{w}
\end{array}\right]-C\right)
\end{aligned}
$$



## Stereo Vision

> Detailed Procedures (Step 2)

$$
\rightarrow \lambda\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=K R^{-1}\left(\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w}
\end{array}\right]-C\right)
$$

We can now write the Perspective Equation for the Left and Right cameras, respectively. Here, we assume that Left and Right cameras have different intrinsic parameter matrices, $K$

Left camera

$$
\begin{gathered}
\left.\lambda_{L}\left[\begin{array}{c}
u_{L} \\
v_{L} \\
1
\end{array}\right]=K_{K_{L} R_{L}^{-1}}\left(\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w}
\end{array}\right]-C_{L}\right) \\
\text { Right camera } \begin{array}{l}
\text { If matrices }\left\{\mathrm{K}_{\mathrm{L}}, \mathrm{~K}_{\mathrm{R}}\right\} \text { are } \\
\text { the same, and }\left\{\mathrm{R}_{\mathrm{L}}, \mathrm{R}_{\mathrm{R}}\right\} \\
\text { are the same, image } \\
\text { planes are aligned. }
\end{array} \\
\lambda_{R}\left[\begin{array}{c}
u_{R} \\
v_{R} \\
1
\end{array}\right]=K_{R} R_{R}^{-1}\left(\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w}
\end{array}\right]-C_{R}\right)
\end{gathered}
$$



## Stereo Vision

## $>$ Detailed Procedures (Step 3)

The goal of stereo rectification is to warp the left and right camera images such that their image planes are aligned (by introducing the same new rotation $\widehat{\boldsymbol{R}}$ and new intrinsic parameters $\widehat{\boldsymbol{K}}$ ).


## Stereo Vision

$>$ Detailed Procedures (Step 4)
$\checkmark$ Coordinate change in 2D can be expressed by a 3*3 transformation.
$\checkmark$ We first compute the transformation, and then use it to compute the warped coordinates:


$$
\hat{\lambda}_{R}\left[\begin{array}{c}
\hat{u}_{R} \\
\hat{v}_{R} \\
1
\end{array}\right]=\lambda_{R} \widehat{\boldsymbol{K}} \widehat{\boldsymbol{R}}^{-1} R_{R} K_{R}^{-1}\left[\begin{array}{c}
u_{R} \\
v_{R} \\
1
\end{array}\right]
$$

Transformation of


## Stereo Vision

> Intrinsic and Rotation Matrices

Origins of cameras remain unchanged
$\checkmark$ How do we choose the new $\widehat{\mathbf{K}}$ ? A common choice is to take the arithmetic average of $K_{L}$ and $K_{R}$

$$
\widehat{\boldsymbol{K}}=\frac{K_{L}+K_{R}}{2}
$$

$\checkmark$ How do we choose the new $\widehat{\boldsymbol{R}}=\left[\widehat{r_{1}}, \widehat{r_{2}}, \widehat{r_{3}}\right]$ with $\widehat{r_{1}}, \widehat{r_{2}}, \widehat{r_{3}}$ being the column vectors of $\hat{R}$ ?

$$
\begin{aligned}
& \text { A common choice is as follows: } \\
& \qquad \begin{array}{c}
\widehat{r}_{1}=\frac{C_{R}-C_{L}}{\left\|C_{R}-C_{L}\right\|} \quad \text { This makes the new image planes parallel to the baseline } \\
\widehat{r}_{2}=r_{3 L} \times \widehat{r}_{1} \\
\begin{array}{l}
\text { Ild } r_{3}
\end{array} \text { where } r_{3 L} \text { is the } 3^{\text {rd }} \text { column of the rotation matrix of the left camera, i.e., } R_{L}
\end{array}
\end{aligned}
$$

$$
\widehat{r_{3}}=\widehat{r_{1}} \times \widehat{r_{2}}
$$

## Stereo Vision

## > Example

$\checkmark$ Preprocessing step: image undistortion (introduced before)


Input image pair
Compute lens distortion

## Stereo Vision

## > Example

$\checkmark$ Then, compute transformation to rectify/warp images.
$\checkmark$ Use interpolation to generate the warped image. The transformed coordinates are float numbers, but pixel coordinates are typical integer numbers. (if necessary, I will introduce how to solve this problem in the future).

Left
Right


Left


## Stereo Vision

> Follow-up Task of 3D Reconstruction
$\checkmark$ Result of stereo rectification: Corresponding epipolar lines are horizontal and collinear.
$\checkmark$ We can conduct the 1D dense correspondence search.


## Stereo Vision

## > Follow-up Task of 3D Reconstruction

$\checkmark$ From Rectified Image Pair to Disparity Map

- For every pixel in the left image, find its corresponding point in the right image based on descriptor similarity (introduced in the next class).
- Compute the disparity for each found pair of correspondences, i.e., $x^{\prime}-x$


Left image


Right image


Close objects experience bigger disparity
$\rightarrow$ appear brighter in disparity map

## Stereo Vision

## > Follow-up Task of 3D Reconstruction

$\checkmark$ From Disparity Map to 3D Point Cloud

- Once the disparity is obtained, the depth of each point can be computed recalling that:



## Summary

$>$ Overview of 3D Reconstruction
$>$ Triangulation (General Case)
> Stereo Vision (Simplified Case)

Thank you for your listening!
If you have any questions, please come to me :-)


[^0]:    Baseline = distance between the optical

