Computer Vision II: Multiple View Geometry (IN2228)

Chapter 07 3D-2D Geometry

Dr. Haoang Li

21 June 2023 12:00-13:30

Announcements before Class

> Reminder
\checkmark For 2D-2D geometry, due to time limit, we skip the case of multiple views (last year, Prof. Cremers also skipped this part).
\checkmark Thus, we cancel the Exercise 7.

Today's Outline

> Overview of 3D-2D Geometry
$>$ Definition of Perspective-n-Points (PnP)
> Classical Algorithms
> Advanced Algorithms
$>$ Brief Introduction to Perspective-n-Lines (PnL)

Overview of 3D-2D Geometry

> Recap on Coordinate System
\checkmark Relative pose from the right camera frame to the left camera frame

Left and right camera frames in VO/SLAM/SFM

Overview of 3D-2D Geometry

> Recap on Coordinate System

\checkmark Absolute pose from the camera frame to the world frame

World frame and camera frames in VO/SLAM/SFM

Overview of 3D-2D Geometry

$>$ Comparison Between 2D-2D Geometry and 3D-2D Geometry

\checkmark Different types of correspondences

- 2D-2D geometry: 2D-2D correspondences for relative camera pose estimation. It is NOT suitable to compute the absolute poses of sequential images since 1) it is time-consuming, and 2) the estimated translation is up-to-scale.
- 3D-2D geometry: 3D-2D correspondences for absolute camera pose estimation.

Relative camera pose

Absolute camera pose

Overview of 3D-2D Geometry

> Recap on Perspective Projection

\checkmark Perspective projection model and practical configuration

Extrinsic Parameters

Two practical configurations:

1. R, T is known. We use them to obtain 2D projections.
2. 2D projections (associated with 3D points) is known. We use them to compute R, T -> Our today's content

Definition of Perspective-n-Points

> Input and Output

\checkmark Perspective-n-Points (PnP) is to determine the 6-DoF absolute pose of a camera (extrinsic parameters) with respect to the world frame, given a set of 3D-2D point correspondences. \checkmark It assumes that the camera is already calibrated (i.e., we know its intrinsic parameters).

Definition of Perspective-n-Points

> Relationship with Camera Calibration
\checkmark Camera calibration focuses on "simultaneous" calibration of extrinsic and intrinsic parameters.
\checkmark PnP aims to only estimate the extrinsic parameters (with "known" intrinsic parameters), i.e., a camera localization problem.

Camera calibration
(multiple images)

Camera localization (a single image)

Definition of Perspective-n-Points

> Minimal Case

$\checkmark 2$ Points: a infinite number of solutions, but bounded
$\checkmark 3$ Points: minimal case
$\checkmark 4$ Points: more reliable

Definition of Perspective-n-Points

> Minimal Case

\checkmark Geometric illustration of 2-point case
Camera position has a infinite number of solutions.

Definition of Perspective-n-Points

> Minimal Case

\checkmark Geometric illustration of 3-point case
Camera position can be determined (minimal case).

- The first and second curved surfaces intersect, forming a 3D curve.
- The 3D curve and the third curved surface intersect, forming a 3D point (camera center)

Image plane

Definition of Perspective-n-Points

> Minimal Case

$$
\mathbf{a} \times \mathbf{b}=[\mathbf{a}]_{\times} \mathbf{b}=\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

\checkmark Algebraic illustration

$$
\mathbf{d}_{i}^{\mathbf{x}} \propto \mathbf{d}_{i}^{\mathbf{X}} \Rightarrow \underset{3 D \text { vector }}{\mathbf{K}^{-1} \mathbf{x}_{i} \propto\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right] \mathbf{X}_{i}}
$$

" \propto " represents equality regardless of scale, i.e., two vectors are parallel, which leads to the cross product of 0 .

A 3*3 skew-symmetric matrix has the rank of 2 , so each 3D-2D point correspondence provide two constraints.

Camera pose has 6 DOF, so we need at least three point correspondences.

Camera frame

Definition of Perspective-n-Points

> 3D-2D Correspondence Establishment
\checkmark Generating 3D-2D correspondence based on 2D descriptor

- Mapping descriptor of 2D point to reconstructed 3D point
- Matching 3D point to 2D extracted point based on descriptor similarity
- We can also use prior camera pose to establish correspondences geometrically (introduced in the future)

Correspondence establishment

Classical Algorithms

> Direct Linear Transformation (DLT)
\checkmark Recap on rewriting perspective projection

$$
\lambda\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{llll}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34}
\end{array}\right]\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]
$$

Calibration problem

$$
\begin{gathered}
\lambda\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=K[R \mid T] \cdot\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right] \Rightarrow \\
\Rightarrow \lambda\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
\alpha_{u} & 0 & u_{0} \\
0 & \alpha_{v} & v_{0} \\
0 & 0 & 1
\end{array}\right]}_{\substack{\text { Known intrinsic } \\
\text { parameters }}} \cdot \underbrace{\text { Unknown extrinsic }_{\text {parameters }}}_{\left.\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & t_{1} \\
r_{21} & r_{22} & r_{23} & t_{2} \\
r_{31} & r_{32} & r_{33} & t_{3}
\end{array}\right]}\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]
\end{gathered}
$$

Classical Algorithms

> Direct Linear Transformation (DLT)

$$
\lambda\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\alpha_{u} & 0 & u_{0} \\
0 & \alpha_{v} & v_{0} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & t_{1} \\
r_{21} & r_{22} & r_{23} & t_{2} \\
r_{31} & r_{32} & r_{33} & t_{3}
\end{array}\right] \cdot\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]
$$

\checkmark Linear constraint derivation
Express s based on the last row, and rewrite the first and second rows.

Classical Algorithms

> Direct Linear Transformation (DLT)
\checkmark Rewrite transformation matrix by row vectors

New vector definition

$$
\mathbf{t}_{1}=\left(t_{1}, t_{2}, t_{3}, t_{4}\right)^{T}, \mathbf{t}_{2}=\left(t_{5}, t_{6}, t_{7}, t_{8}\right)^{T}, \mathbf{t}_{3}=\left(t_{9}, t_{10}, t_{11}, t_{12}\right)^{T}
$$

\square

$$
\left\{\begin{array}{l}
u_{1}=\frac{t_{1}\left[X+t_{2} Y+t_{3} Z+t_{4}\right.}{t_{9} X+t_{10} Y+t_{11} Z+t_{12}} \\
v_{1}=\frac{t_{5} X+t_{6} Y+\mid t_{7} Z+t_{8}}{t_{9} X+t_{10} Y+t_{11} Z+t_{12}}
\end{array}\right.
$$

$$
\mathbf{t}_{1}^{T} \sqrt[\mathbf{P}]{ }-\mathbf{t}_{3}^{T} \overline{\mathbf{P}} u_{1}=0
$$

P is in homogeneous coordinates

$$
\mathbf{t}_{2}^{T} \mathbf{P}-\mathbf{t}_{3}^{T} \mathbf{P} v_{1}=0
$$

Classical Algorithms

> Direct Linear Transformation (DLT)

\checkmark Generate a linear system

Since t has a total dimension of 12 , the linear solution of the transformation matrix \mathbf{T} can be achieved by at least six pairs of matching points.

Classical Algorithms

> Perspective-3-Points (P3P)

\checkmark Configuration of P3P

Three pairs of triangles

Configuration of P3P problem

Classical Algorithms

> Perspective-3-Points (P3P)

\checkmark The law of cosines
Known from the normalized image points
$\overline{O A}^{2}+\overline{O B}^{2}-2 \cdot \overline{O A} \cdot \overline{O B} \cdot \cos \langle a, b\rangle=\overline{A B}^{2}$ $\overline{O B}^{2}+\overline{O C}^{2}-2 \cdot \overline{O B} \cdot \overline{O C} \cdot \cos \langle b, c\rangle=\overline{B C}^{2} \quad \begin{gathered}\text { coordinates in the world }\end{gathered}$ $\overline{O A}^{2}+\overline{O C}^{2}-2 \cdot \overline{O A} \cdot \overline{O C} \cdot \cos \langle a, c\rangle=\overline{A C}^{2}$ frame (distance is invariant in different frames)

Variable in the camera
frame w.r.t. the
Configuration of P3P problem
unknown camera pose

Classical Algorithms

> Perspective-3-Points (P3P)

\checkmark Rewrite the law of cosines
Divide each equation by $\overline{O C}^{2}$ on both sides, and denote $x=\overline{O A} / \overline{O C}, y=\overline{O B} / \overline{O C}$

$$
\begin{aligned}
& \begin{array}{l}
\overline{O A}^{2}+\overline{O B}^{2}-2 \cdot \overline{O A} \cdot \overline{O B} \cos \langle a, b\rangle=\overline{A B}^{2} \\
\overline{O B}^{2}+\overline{O C}^{2}-2 \cdot \overline{O B} \cdot \overline{O C} \cdot \cos \langle b, c\rangle=\overline{B C}^{2}
\end{array} \\
& \overline{O A}^{2}+\overline{O C}^{2}-2 \cdot \overline{O A} \cdot \overline{O C} \cdot \cos \langle a, c\rangle=\overline{A C}^{2} \\
& \begin{array}{l}
x^{2}+y^{2}-2 . x . y \cdot \cos \langle a, b\rangle=\overline{A B}^{2} / \overline{O C}^{2} \\
y^{2}+1^{2}-2 . y \cdot \cos \langle b, c\rangle=\overline{B C}^{2} / \overline{O C}^{2}
\end{array} \\
& x^{2}+1^{2}-2 \cdot x \cdot \cos \langle a, c\rangle=\overline{A C}^{2} / \overline{O C}^{2} .
\end{aligned}
$$

We further denote \square $u=\overline{B C}^{2} / \overline{A B}^{2}, w=\overline{A C}^{2} / \overline{A B}^{2}$

Known variable for derivation
Accordingly, we have $u \cdot v=\overline{B C}^{2} / \overline{O C}^{2}$, w.v $=\overline{A C}^{2} / \overline{O C}^{2}$

Classical Algorithms

> Perspective-3-Points (P3P)

\checkmark Rewrite the law of cosines
Generate polynomial system w.r.t. unknown v, x, and y

$$
\begin{aligned}
& x^{2}+y^{2}-2 . x . y \cdot \cos \langle a, b\rangle=\overline{A B}^{2} / \overline{O C}^{2} \\
& y^{2}+1^{2}-2 \cdot y \cdot \cos \langle b, c\rangle=\overline{B C}^{2} / \overline{O C}^{2} \quad \text { 〉 } \\
& x^{2}+1^{2}-2 \cdot x \cdot \cos \langle a, c\rangle=\overline{A C}^{2} / \overline{O C}^{2} . \\
& \text { Unknown known Unknown } \\
& x^{2}+y^{2}-2 \cdot x \cdot y \cdot \cos \langle a, b\rangle-v=0 \\
& y^{2}+1^{2}-2 \cdot y \cdot \cos \langle b, c\rangle-u \cdot v=0 \\
& x^{2}+1^{2}-2 \cdot x \cdot \cos \langle a, c\rangle-\frac{u}{\text { known }} \cdot v=0 .
\end{aligned}
$$

We substitute the first equation to the second and third to eliminate \boldsymbol{v}, obtaining

$$
\begin{aligned}
& (1-u) y^{2}-u x^{2}-2 \cos \langle b, c\rangle y+2 u x y \cos \langle a, b\rangle+1=0 \\
& (1-w) x^{2}-w y^{2}-2 \cos \langle a, c\rangle x+2 w x y \cos \langle a, b\rangle+1=0 .
\end{aligned}
$$

Classical Algorithms

> Perspective-3-Points (P3P)

$$
\begin{gathered}
x=\overline{O A} / \overline{O C}, y=\overline{O B} / \overline{O C} \\
x^{2}+y^{2}-2 \cdot x \cdot y \cdot \cos \langle a, b\rangle=\overline{A B}^{2} / \overline{O C}^{2}
\end{gathered}
$$

\checkmark Solving the multivariate quadratic polynomial w.r.t. unknown x and

$$
\begin{aligned}
& (1-u) y^{2}-u x^{2}-2 \cos \langle b, c\rangle y+2 u x y \cos \langle a, b\rangle+1=0 \\
& (1-w)
\end{aligned}
$$

- Use Wu's elimination method to obtain x and y.
- Use x and y to compute OC
- Use x, y and $O C$ to obtain $O A$ and $O B$
- We can thus obtain the coordinates of A, B, C in the camera frame
- Based on the 3D-3D point pair, the closed-form solution of camera movement R, t can be calculated. (introduced tommorw)

Advanced Algorithms

> Efficient Perspective-n-Points (EPnP)

Express each 3D point by a linear combination of four control points.

- We first determine the coordinates of these four control points in both camera and world frames.
- Then we use control points to obtain coordinates of each 3D point in both camera and world frames (3D3D point correspondences).
- Finally, we use 3D-3D point correspondences to compute closed-form solution of rotation and translation.

Advanced Algorithms

$>$ Efficient Perspective-n-Points (EPnP)

Express each 3D point by a linear combination of four control points in the world frame.

A coordinate system for triangles (α, β, γ)

Barycentric coordinates in 2D

Non-homogeneous

$$
\begin{gathered}
\mathbf{p}_{i}^{w}=\sum_{j=1}^{4} \alpha_{i j} \mathbf{c}_{j}^{w} \\
\sum_{j=1}^{4} \alpha_{i j}=1 \\
\text { Coefficients are called } \\
\text { homogeneous } \\
\text { barycentric coordinates }
\end{gathered}
$$

Advanced Algorithms

> Efficient Perspective-n-Points (EPnP)

$$
\begin{aligned}
& \mathbf{p}_{i}^{w}=\sum_{j=1}^{4} \alpha_{i j} \mathbf{c}_{j}^{w} \\
& \sum_{j=1}^{4} \alpha_{i j}=1
\end{aligned}
$$

$$
\mathbf{c}_{j}^{c}=[\mathbf{R} \mid \mathbf{t}]\left[\begin{array}{c}
\mathbf{c}_{j}^{w} \\
1
\end{array}\right]
$$

We denote the pose from the world frame to the camera frame by $[\mathbf{R} \mid \mathbf{t}]$
An ordinary 3D point in the camera frame can be expressed by

Advanced Algorithms

$>$ Efficient Perspective-n-Points (EPnP)

\checkmark Linear constraint to solve control points in the camera
Perspective projection of ordinary points in the camera frame

$$
\omega_{i}^{[} \underset{\text { Known }}{\left[\begin{array}{c}
\mathbf{u}_{i} \\
1
\end{array}\right]}=\underset{\text { Unknown }}{\substack{\text { Ordinary } \\
\text { point } \\
\mathbf{k} \mathbf{p}_{i}^{c}}}=\underset{j=1}{\mathbf{K}} \sum_{\text {Unknown }}^{4} \alpha_{i j} \stackrel{\mathbf{c}_{j}^{c}}{\text { Unown }}=\left[\begin{array}{ccc}
f_{x} & 0 & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right] \underset{j=1}{\sum_{\text {Know }}^{4}} \alpha_{i j}\left[\begin{array}{c}
x_{j}^{c} \\
y_{j}^{c} \\
z_{j}^{c}
\end{array}\right]
$$

$$
\begin{aligned}
\begin{array}{c}
\text { Constraint w.r.t. unknown } \\
\text { control points in the } \\
\text { camera frame }
\end{array}
\end{aligned}\left\{\begin{array}{l}
\sum_{j=1}^{4}\left(\alpha_{i j} f_{x} \sqrt[x_{j}^{c}]{ }+\alpha_{i j}\left(c_{x}-u_{i}\right) \boxed{z_{j}^{c}}\right)=0 \\
\sum_{j=1}^{4}\left(\alpha_{i j} f_{y} \sqrt[y_{j}^{c}]{ }+\alpha_{i j}\left(c_{y}-v_{i}\right) z_{j}^{c}\right)=0
\end{array}\right.
$$

Advanced Algorithms

> Efficient Perspective-n-Points (EPnP)

Each 3D-2D correspondence can provide two linear constraints. We use at least 6 correspondences to generate 12 equations, solving 12 unknown parameters of control points in the camera frame.

$$
\left\{\begin{array}{l}
\sum_{j=1}^{4}\left(\alpha_{i j} f_{x} x_{j}^{c}+\alpha_{i j}\left(c_{x}-u_{i}\right) z_{j}^{c}\right)=0 \\
\sum_{j=1}^{4}\left(\alpha_{i j} f_{y} y_{j}^{c}+\alpha_{i j}\left(c_{y}-v_{i}\right) z_{j}^{c}\right)=0
\end{array}\right.
$$

Advanced Algorithms

> Comparison between EPnP and DLT

\checkmark Accuracy test w.r.t. noise
EPnP is up to $\mathbf{1 0}$ times more robust to noise than DLT.

Advanced Algorithms

> Comparison between EPnP and DLT

\checkmark Accuracy test w.r.t. number of correspondences
EPnP is up to $\mathbf{1 0}$ times more accurate than DLT

Advanced Algorithms

> Comparison between EPnP and DLT

\checkmark Efficiency test w.r.t. number of correspondences
EPnP is up to $\mathbf{1 0}$ times more efficient than DLT

number of points used to estimate pose

Advanced Algorithms

> Iterative Method

In addition to the linear method, we can also formulate the PnP problem as a nonlinear least-square problem about re-projection errors.

$$
\begin{aligned}
& s_{i}\left[\begin{array}{l}
u_{i} \\
v_{i} \\
1
\end{array}\right]=\mathbf{K T}\left[\begin{array}{l}
X_{i} \\
Y_{i} \\
Z_{i} \\
1
\end{array}\right] \quad \boldsymbol{\searrow} \quad \mathbf{T}^{*}=\arg \min _{\mathbf{T}} \frac{1}{2} \sum_{i=1}^{n}\left\|\mathbf{u}_{i}-\frac{1}{s_{i}} \mathbf{K} \underset{\mathbf{T}}{\mathbf{T}} \boldsymbol{P}_{i}\right\|_{2}^{2} . \\
& \text { Initial value provided by } \\
& \text { DLT/EPnP } \\
& \text { Known intrinsic matrix } \\
& \text { Unknown extrinsic matrix }
\end{aligned}
$$

Brief Introduction to Perspective-n-Lines (PnL)

$>$ Definition of PnL
\checkmark Input
A set of 3D-2D line correspondences $3 D$ lines is in the world frame
\checkmark Output
3-DOF rotation and 3-DOF translation aligning the world frame to the camera frame.

Endpoints of image line segments

Brief Introduction to Perspective-n-Lines (PnL)

> Definition of PnL
\checkmark Basic geometric constraints

The transformation from the world frame to the camera frame for the Plücker line coordinates (page 22/57 of Chapter 02 Part 1)

Brief Introduction to Perspective-n-Lines (PnL)

$>$ Definition of PnL
\checkmark Basic geometric constraints

Perspective projection of Plücker line coordinates (page 32/51 of Chapter 03 Part 1) in the camera frame

Known image line
Known Intrinsic matrix for line projection

Brief Introduction to Perspective-n-Lines (PnL)

> Methods to Solve PnL
\checkmark Direct Linear Transform (one-step method)
We can jointly estimate the rotation and translation.

Each line correspondence can provide two linear constraints. We need at least 9 correspondences to estimate 18 elements.

Known
coefficient matrix

3*6=18 elements of the above matrix

Bronislav Priby et al., "Camera Pose Estimation from Lines using Plücker Coordinates", in BMVC, 2015

Summary

$>$ Overview of 3D-2D Geometry
$>$ Definition of Perspective-n-Points (PnP)
> Classical Algorithms
> Advanced Algorithms
$>$ Brief Introduction to Perspective-n-Lines (PnL)

Thank you for your listening!
If you have any questions, please come to me :-)

