Computer Vision II: Multiple View Geometry (IN2228)

Chapter 08 3D-3D Geometry

Dr. Haoang Li

22 June 2023 11:00-11:45

Explanation for Linear Systems of PnP

> Recap on System Generation
\checkmark DLT (direct, one-step)

$$
\begin{aligned}
& \mathbf{t}_{1}^{T} \mathbf{P}-\mathbf{t}_{3}^{T} \mathbf{P} u_{1}=0 \\
& \mathbf{t}_{2}^{T} \mathbf{P}-\mathbf{t}_{3}^{T} \mathbf{P} v_{1}=0
\end{aligned}
$$

$$
\begin{aligned}
& \quad \mathbf{t}_{2}^{1} \mathbf{P}-\mathbf{t}_{3}^{1} \mathbf{P} v_{1}=0 \\
& \text { Constraint of one correspondence }
\end{aligned}
$$

$$
\left.\left(\begin{array}{ccc}
\mathbf{P}_{1}^{T} & 0 & -u_{1} \mathbf{P}_{1}^{T} \\
0 & \mathbf{P}_{1}^{T} & -v_{1} \mathbf{P}_{1}^{T} \\
\vdots & \vdots & \vdots \\
\mathbf{P}_{N}^{T} & 0 & -u_{N} \mathbf{P}_{N}^{T} \\
0 & \mathbf{P}_{N}^{T} & -v_{N} \mathbf{P}_{N}^{T}
\end{array}\right) \right\rvert\, \begin{gathered}
\text { Parameters of transformation } \\
\left(\begin{array}{c}
\mathbf{t}_{1} \\
\mathbf{t}_{2} \\
\mathbf{t}_{3}
\end{array}\right)=0
\end{gathered}
$$

\checkmark EPnP (indirect, two-step)

$$
\left\{\begin{array}{l}
\sum_{j=1}^{4}\left(\alpha_{i j} f_{x} x_{j}^{c}+\alpha_{i j}\left(c_{x}-u_{i}\right) z_{j}^{c}\right)=0 \\
\sum_{j=1}^{4}\left(\alpha_{i j} f_{y} y_{j}^{c}+\alpha_{i j}\left(c_{y}-v_{i}\right) z_{j}^{c}\right)=0
\end{array}\right.
$$

Explanation for Linear Systems of PnP

> Use Redundant Points to Improve Accuracy
\checkmark If we have prior knowledge that all the correspondences are inliers, we can use all the correspondences to generate an over-determined linear system.
\checkmark The result is the least-squared solution.
\checkmark It is helpful for noise compensation.

Explanation for Linear Systems of PnP

> Experimental Illustration of Redundant Case

\checkmark The more inlier points we use, the higher the algorithm accuracy is

Explanation for 2-Point Configuration

> Recap on Our Analysis Method
\checkmark Compute circumference angle based on the normalized image points.
\checkmark Find the optimal camera center satisfying the constraint of circumference angle.

Explanation for 2-Point Configuration

> Recap on Our Analysis Method

\checkmark Can we enforce the constraint of distance (focal length)?

- No. We do not know image plane. We can treat image plane and camera center as a whole part.
- The angle is computed based on image points, but we should consider the relationship between 3D point and camera center (see right figure).

Today's Outline

> Overview of 3D-3D Geometry
> Non-iterative Method: SVD-based Method Iterative Method: Iterative closest point (ICP)

Overview of 3D-3D Geometry

> Problem formulation

In essence, the following two types of formulations are equivalent.
\checkmark First type: N points in both first and second coordinate systems
Example: in EPnP, four control point are static. We aim to determine their coordinate in both world frame and camera frame.
\checkmark Second type: $N+N$ points in a single coordinate system
Example: Point set moves in a single coordinate system.

Overview of 3D-3D Geometry

> Two Sub-problems
\checkmark 3D-3D Correspondence Establishment
\checkmark Transformation Estimation

- Case of SE(3)
- Case of $\operatorname{Sim}(3)$

$$
\operatorname{SE}(3) \quad \mathbf{T}=\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right] \quad \square \quad \operatorname{Sim}(3) \quad \mathbf{T}_{S}=\left[\begin{array}{cc}
s \mathbf{R} & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right]
$$

Overview of 3D-3D Geometry

> Intuitive Illustration

Motion estimation from 3D-to-3D feature correspondences (also known as point cloud registration problem)
\checkmark Input: Two point sets f_{k-1} and f_{k} in 3D. They are obtained by triangulation or stereo vision. They can also be virtual points (e.g., control points in EPnP).
\checkmark The minimal-case solution involves three 3D-3D point correspondences.
\checkmark Solving the following system of equations w.r.t. unknown R and T :

$$
\begin{aligned}
& {\left[\begin{array}{c}
X^{i}{ }_{k-1} \\
Y^{i}{ }_{k-1} \\
Z^{i}{ }_{k-1}
\end{array}\right]=\left[\begin{array}{lll|}
\hline r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]\left[\begin{array}{c}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\right] \cdot\left[\begin{array}{c}
X^{i}{ }_{k} \\
Y_{{ }_{k}} \\
Z_{k}{ }_{k} \\
1
\end{array}\right]} \\
& \text { is the feature ID. }
\end{aligned}
$$

Overview of 3D-3D Geometry

> Formal Definition
\checkmark Input: two point sets (we do not know which two points are corresponding)

$$
\begin{aligned}
& X=\left\{x_{1}, \ldots, x_{N_{x}}\right\} \\
& P=\left\{p_{1}, \ldots, p_{N_{p}}\right\}
\end{aligned}
$$

Number of points are unnecessarily the same
\checkmark Goal: Find the optimal translation t and rotation R minimizing the sum of the squared error

$$
E(R, t)=\frac{1}{N_{p}} \sum_{i=1}^{N_{p}}\left\|x_{i}-R p_{i}-t\right\|^{\downarrow}
$$

where x_{i} and p_{i} are unknown-but-sought corresponding points.

Overview of 3D-3D Geometry

> Two Configurations

\checkmark If the correct correspondences are known, the correct rotation and translation can be calculated in closed form (non-iterative method).
\checkmark If the correct correspondences are not known, it is generally impossible to determine the optimal rotation and translation in one step. We have to perform iterations.

Overview of 3D-3D Geometry

> Comparison with 2D-2D Geometry

Motion estimation from 2D-to-2D feature correspondences
\checkmark Both feature correspondences f_{k-1} and f_{k} are in image coordinates (2D)
\checkmark The minimal case solution involves 5 feature correspondences
\checkmark Popular algorithms:

- 8-point algorithm
- 5-point algorithm

Overview of 3D-3D Geometry

> Comparison with 3D-2D Geometry

Motion estimation from 3D-to-2D feature correspondences, i.e., Perspective-n-Points (PnP) problem)
\checkmark Feature f_{k-1} is in 3D and feature f_{k} in 2D
\checkmark Popular algorithms:

- DLT algorithm: at least 6 point correspondences
- P3P algorithm: minimal case with 3 point correspondences
- EPNP algorithm: at least 6 point correspondences

Non-iterative Method

$>\mathrm{SE}(3)$

This case is mainly introduced today

$>\operatorname{Sim}(3)$

\checkmark Horn's method [1]
\checkmark Umeyama's method [2]

[1] Berthold K. P. Horn, "Closed-form solution of absolute orientation using unit quaternions," in Journal of the Optical Society of America A, vol. 4, no. 2, pp. 629-642, 1987.
[2] Umeyama S. Least-squares estimation of transformation parameters between two point patterns. IEEE Trans Pattern Anal Mach Intell. 1991;13:376-380. doi:10.1109/34.88573.

Non-iterative Method

> Preprocessing Step

\checkmark Computing center of mass

$$
\mu_{x}=\frac{1}{N_{x}} \sum_{i=1}^{N_{x}} x_{i} \quad \text { and } \quad \mu_{p}=\frac{1}{N_{p}} \sum_{i=1}^{N_{p}} p_{i}
$$

Here, we can simply assume that $N_{x}=N_{p}$
\checkmark Point set normalization
We subtract the corresponding center of mass from each point in the two point sets

$$
\begin{aligned}
& X^{\prime}=\left\{x_{i}-\mu_{x}\right\}=\left\{x_{i}^{\prime}\right\} \\
& P^{\prime}=\left\{p_{i}-\mu_{p}\right\}=\left\{p_{i}^{\prime}\right\}
\end{aligned}
$$

We use the normalized point sets to calculate the transformation.

Non-iterative Method

> Transformation Recovery

\checkmark Singular Value Decomposition
We compute matrix W by

$$
W=\sum_{i=1}^{N_{p}} x_{i}^{\prime} p_{i}^{\prime T}
$$

We conduct the singular value decomposition (SVD) of W by:

$$
W=U\left[\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & \sigma_{3}
\end{array}\right] V^{T}
$$

where $\sigma_{1} \geq \sigma_{2} \geq \sigma_{3}$ are the singular values of W

Non-iterative Method

> Transformation Recovery
\checkmark Computation of rotation and translation
The optimal solution of transformation is unique and is given by:

$$
\begin{aligned}
& R=U V^{T} \\
& t=\mu_{x}-R \mu_{p}
\end{aligned}
$$

The conclusion is very precise, but how can we obtain this result? [1]

[^0]
Non-iterative Method

> Derivation Behind Conclusion

$$
\begin{aligned}
& R=U V^{T} \\
& t=\mu_{x}-R \mu_{p}
\end{aligned}
$$

Previous conclusion

Due to limited, only some key steps are provided.

$$
\begin{aligned}
& E(R, t)=\sum_{i=1}^{n}\left\|y_{i}-R x_{i}-t\right\|^{2} \\
&=\sum_{i=1}^{n}\left\|y_{i}-R x_{i}-t-y_{o}+y_{o}-R x_{o}+R x_{o}\right\|^{2} \\
&=\sum_{i=1}^{n}\left\|y_{i}-y_{o}-R\left(x_{i}-x_{o}\right)\right\|^{2}+n\left\|y_{o}-R x_{o}-t\right\|^{2} \\
& \text { This part is only w.r.t R } \quad \begin{array}{l}
\text { Independent from specific points. } \\
\begin{array}{l}
\text { We can force this part to be } 0 . \text { After } \\
\text { obtaining } \mathrm{R}, \text { we can obtain } \mathrm{t}
\end{array}
\end{array}
\end{aligned}
$$

Non-iterative Method

> Derivation Behind Conclusion

Due to limited, only some key steps are provided.

$$
W=\sum_{i=1}^{N_{p}} x_{i}^{\prime} p_{i}^{\prime T}
$$

$$
W=U\left[\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & \sigma_{3}
\end{array}\right] V^{T}
$$

$$
\begin{aligned}
R^{*} & =\underset{R}{\arg \min } \sum_{i=1}^{n}\left\|y_{i}-y_{o}-R\left(x_{i}-x_{o}\right)\right\|^{2} \\
& =\underset{R}{\arg \min } \sum_{i=1}^{n}\left\|y_{i}^{\prime}-R x_{i}^{\prime}\right\|^{2} \quad \text { Normalized points } \\
& =\underset{R}{\arg \min } \sum_{i=1}^{n}\left(y_{i}^{\prime T} y_{i}^{\prime}+x_{i}^{\prime T} R^{T} R x_{i}^{\prime}-2 y_{i}^{\prime T} R x_{i}^{\prime}\right) \quad \text { Expansion } \\
& =\underset{R}{\arg \min } \sum_{i=1}^{n}\left(-2 y_{i}^{\prime T} R x_{i}^{\prime}\right) \\
& =\underset{R}{\arg \max } \sum_{i=1}^{n}\left(y_{i}^{T} R x_{i}^{\prime}\right)
\end{aligned} \begin{aligned}
& \text { Refoct the part independent from } \mathrm{R} \\
& \text { as a maximization problem }
\end{aligned}
$$

$$
R=U V^{T}
$$

Iterative closest point (ICP)

> Overview
\checkmark Idea: Iteratively align two point sets
\checkmark Iterative Closest Points (ICP) algorithm [1]
\checkmark Converges if corresponding points are "close enough"

[1] P. J. Besl and N. D. McKay, "A method for registration of 3-D shapes," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp. 239-256, Feb. 1992

Iterative closest point (ICP)

> Intuitive Illustration

\checkmark The major problem is to determine the correct data associations. We treat a pair of points with the smallest distance as a "temporary" 3D-3D correspondence.
\checkmark Given the associated points, the transformation can be computed efficiently using SVD.

A set of points is chosen along each line.
One point set (blue) is iteratively transformed to minimize the distance between each pair of points.

Iterative closest point (ICP)

> Detailed Procedures
\checkmark Determine corresponding points based on the smallest distance
\checkmark Compute rotation R, translation t via SVD
\checkmark Apply R and t to the points of the set to be registered
\checkmark Compute the error $E(R, t)$
\checkmark If error decreased and error > threshold

- Repeat these steps
- Stop and output final alignment, otherwise

Iterative closest point (ICP)

> Variants

\checkmark Several improvements have been proposed at different stages:

- Weighting the correspondences (mainly for high accuracy)
- Rejecting outlier point pairs (mainly for high robustness)

Some inlier correspondences are noisy. They should be assigned relatively small weights.

Outliers must be removed to correctly align point sets

Iterative closest point (ICP)

> Variants

\checkmark Several improvements have been proposed at different stages:

- Jump out of local minima based on global search method, i.e., branch-and-bound (BnB) (mainly for stability).
- Combine ICP and BnB to improve the efficiency of pure BnB .

Error evolution

0.008

Transformation of green point set (red point set remain unchanged)

Summary

> Overview of 3D-3D Geometry
> Non-iterative Method: SVD-based Method
> Iterative Method: Iterative closest point (ICP)

Thank you for your listening!
If you have any questions, please come to me :-)

[^0]: [1] "Least-Squares Fitting of Two 3-D Point Sets", K. S. Arun, T. S. Huang, and S. D. Blostein

