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 Updated Lecture Schedule

Announcement Before Class

Wed 19.04.2023  Chapter 00: Introduction 
Thu 20.04.2023  Chapter 01: Mathematical Backgrounds

Wed 26.04.2023  Chapter 02: Motion and Scene Representation (Part 1)
Thu 27.04.2023  Chapter 02:  Motion and Scene Representation (Part 2)

Wed 03.05.2023  Chapter 03: Image Formation (Part 1)
Thu 04.05.2023  Chapter 03: Image Formation (Part 2)

Wed 10.05.2023  Chapter 04: Camera Calibration
Thu 11.05.2023  Chapter 05: Correspondence Estimation (Part 1)

Wed 17.05.2023  Chapter 05: Correspondence Estimation (Part 2)
Thu 18.05.2023  No lecture (Public Holiday)

Wed 24.05.2023  No lecture (Conference)
Thu 25.05.2023  No lecture (Conference)

For updates, slides, and additional materials:
https://cvg.cit.tum.de/teaching/ss2023/cv2

90-minute course; 45-minute course

Foundation

Core part

Advanced topics and 
high-level tasks

Wed 31.05.2023  Chapter 05: Correspondence Estimation (Part 3)
Thu 01.06.2023  Chapter 06: 2D-2D Geometry (Part 1)

Wed 07.06.2023  Chapter 06: 2D-2D Geometry (Part 2)
Thu 08.06.2023  No lecture (Public Holiday)

Wed 14.06.2023  Chapter 06: 2D-2D Geometry (Part 3)
Thu 15.06.2023  Chapter 06: 2D-2D Geometry (Part 4)

Wed 21.06.2023 Chapter 07: 3D-2D Geometry 
Thu 22.06.2023  Chapter 08: 3D-3D Geometry

Wed 28.06.2023  Chapter 09: Single-view Geometry 
Thu 29.06.2023  Chapter 10: Combination of Different Configurations

Wed 05.07.2023  Chapter 11: Photometric Error and Direct Method
Thu 06.07.2023  Chapter 12: Bundle Adjustment

Wed 12.07.2023  Chapter 13: Robust Estimation 
Thu 13.07.2023  Exam Information and Knowledge Review

Wed 19.07.2023  Chapter 14: SLAM and SFM
Thu 20.07.2023  No Onsite Lecture. Alternative: Online Meeting for Question Answering

Videos and reading materials
about the combination of deep 

learning and multi-view geometry

https://cvg.cit.tum.de/teaching/ss2023/cv2
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 Error Metrics
 Definition of Bundle Adjustment
 Basic Knowledge of Non-linear Optimization

 Application of Non-linear Optimization to Bundle Adjustment Based on 
Lie Algebra (skipped due to limited time)

Today’s Outline
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Error Metrics
 Overview

 The quality of the estimated camera pose can be measured using different error metrics:
• Algebraic error
• Epipolar Line Distance (only for 2D-2D)
• Reprojection Error

 By minimizing any of the above error, we can optimize the camera pose.

 The above metrics are not limited to 2D-2D. We can also use them to evaluate 3D-2D 
case. In our class, let us take 2D-2D for example.
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Error Metrics
 Algebraic Error

 We consider 8-point algorithm for illustration. It seeks to minimize the algebraic error:

 From the derivation of the epipolar constraint and the property of dot product, we can 
observe:

Associative law Property of dot product

Definition of essential matrix (in right camera frame) 03/23
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Error Metrics
 Algebraic Error

 We can see that this product depends on the angle 𝜃𝜃 between and the normal 
to the epipolar plane.

 It is nonzero when            and 𝑻𝑻 are not coplanar.

Normal in the right 
camera frame
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Error Metrics
 Epipolar Line Distance (only for 2D-2D configuration)

 Sum of squared epipolar-line-to-point distances:

 Cheaper than reprojection error (introduced later) because does not require point 
triangulation

Point lies on a line: dot(p, l)=0

05/23Epipolar line computed by the left point

Right point
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Error Metrics
 Reprojection Error

 Sum of the Squared Reprojection Errors

 More expensive than the previous errors because it requires to first triangulate the 3D 
points.

06/23
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Error Metrics
 Reprojection Error

 It is the most popular because more accurate. The reason is that the error is computed 
directly with respect to the original input data, i.e., the image points. It is point-to-point 
distance.

 Previous algebraic error is with respect to 3D direction; Epipolar line distance is a point-
to-line distance.

 Reprojection error is commonly called “golden standard” in our society. For a systematic 
analysis, please refer to [1].

[1] “Multiple View Geometry in Computer Vision”: R. Hartley and A. Zisserman
Link: https://www.robots.ox.ac.uk/~vgg/hzbook/

07/23

https://www.robots.ox.ac.uk/%7Evgg/hzbook/
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Error Metrics
 Reprojection Error

 We often use reprojection error to perform two tasks:
• Pose and 3D point optimization
• Accuracy evaluation

Bundle adjustment for optimization Calibration evaluation
08/23
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Error Metrics
 Error Minimization

 Let us consider 8-point method. For more than 8 points, error will only be 0 if there is 
no noise in the data (if there is image noise, the linear system becomes overdetermined)

 We aim to find the optimal camera pose to minimize the least-squares error.

09/23
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Bundle Adjustment 
 Definition

 We extend two-view reprojection minimization to multi-view case, which is called 
“bundle adjustment”.

 We typically treat the first camera as the world frame.
 We can reformulate the problem as a “graph optimization problem”. Nodes are 

parameters to optimize, and edges are constraints.
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Bundle Adjustment 
 Definition

 We jointly optimize camera poses of all the cameras and 3D points:

where 𝜌𝜌() is the Huber norm for robust estimation (introduced next week)

 We often use non-linear optimization, e.g., Gauss-Newton algorithm to minimize the 
error. Details will be introduced later.
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Bundle Adjustment 
 Strategies for acceleration

 A small window size limits the number of parameters for the optimization and thus 
makes real time bundle adjustment possible.

 It is possible to reduce the computational complexity by just optimizing over the 
camera parameters and keeping the 3D landmarks fixed, e.g., motion-only BA.

A small window Motion-only BA 12/23



Computer Vision Group

 Photometric Bundle Adjustment

We can extend the photometric error between 1-by-1 frames to 1-by-N frames.

Bundle Adjustment

Perspective 
projection

DepthPose
Pixel
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 Problem Formulation

 A teaser of curve fitting
Input: A set of observed discrete points (no outliers here)
Step 1: Select a suitable model/function with unknown parameters
Step 2: Estimate the parameters by the least-squares method: We define an objective 
function, i.e., the sum of squared distances.

Non-linear Optimization

Parameter estimationModel/function selection

y=kx+b y=ax2+bx+c

y=x2+1

11
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2D function1D function
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 Motivation of Gradient Descent Algorithm

To minimize the function, we can employ first-order optimality condition

If the derivative is simple, we can directly obtain the global minimum of objective function. 
However, what if the objective function is more complex?

Non-linear Optimization
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 Motivation of Gradient Descent Algorithm

Instead of directly obtaining the global minimum, we iteratively minimize the function.
xk is a temporary value. It is known.
Δxk is the adjustment of the above temporary value. It is unknown.

Non-linear Optimization

16/23
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 Steepest method

Now consider the k-th iteration. Suppose the current solution is at xk and we want to find 
the increment Δxk. For problem simplification, we use the first-order Taylor expansion to 
re-write the objective function:

Along the negative gradient direction, we can ensure that the function decreases:

Δx is only a direction. We also manually select another step length parameter (learning 
rate), say, λ. The smaller function value is

Non-linear Optimization

Gradient (Jacobi Matrix)
Known Known Unknown

17/23

We do not explicitly 
compute Δx 

New position
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 Newton’s method

We can also use the second-order Taylor expansion to re-write the objective function:

We leverage the first-order optimality condition, i.e., computing the derivative with 
respect to Δx and setting the result to zero. We thus can obtain

Non-linear Optimization

Known Unknown

Hessian matrix 18/23
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 Gauss-Newton Method 

 Motivation
Steepest method results in the zig-zag descending trajectory

Newton’s method is time consuming due to the 
computation of Hessian matrix

We need a more effective method: We will introduce a 
representative method “Gauss-Newton algorithm”.

Non-linear Optimization
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 Gauss-Newton Method 

Similar to the steepest method, we begin with first-order Taylor expansion

We aim to find the optimal Δx to minimize this function

Let us first expand this function:

Non-linear Optimization

20/23

Perfect square formula
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 Gauss-Newton Method 

We compute the derivative of the above function with respect to Δx, and then set the 
derivate to zero:

We transform the above into 

We obtain a linear system to compute Δx

Non-linear Optimization

An approximation to Hessian matrix
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 Application to Bundle Adjustment (A Teaser)

 General objective function simplification by Gauss-Newton

 We have to compute derivative w.r.t. SO3/SE3. It evolves addition and subtraction 
operation.

 Intuitively, R1 is in SO3 and R2 is in SO3, but we cannot guarantee that R1 + R2 is in SO3.
 To solve this problem, we first map Lie Group to Lie Algebra, and compute the derivative 

by Lie Algebra. Due to limited time, we will skip this content this year.

Non-linear Optimization

Adjustment of camera pose and 3D point

22/23

Jacobian matrix w.r.t. pose and point
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 Error Metrics
 Bundle Adjustment
 Non-linear Optimization

Summary

23/23
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Thank you for your listening!
If you have any questions, please come to me :-)
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