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 Updated Lecture Schedule

Announcement Before Class

Wed 19.04.2023  Chapter 00: Introduction 
Thu 20.04.2023  Chapter 01: Mathematical Backgrounds

Wed 26.04.2023  Chapter 02: Motion and Scene Representation (Part 1)
Thu 27.04.2023  Chapter 02:  Motion and Scene Representation (Part 2)

Wed 03.05.2023  Chapter 03: Image Formation (Part 1)
Thu 04.05.2023  Chapter 03: Image Formation (Part 2)

Wed 10.05.2023  Chapter 04: Camera Calibration
Thu 11.05.2023  Chapter 05: Correspondence Estimation (Part 1)

Wed 17.05.2023  Chapter 05: Correspondence Estimation (Part 2)
Thu 18.05.2023  No lecture (Public Holiday)

Wed 24.05.2023  No lecture (Conference)
Thu 25.05.2023  No lecture (Conference)

For updates, slides, and additional materials:
https://cvg.cit.tum.de/teaching/ss2023/cv2

90-minute course; 45-minute course

Foundation

Core part

Advanced topics and 
high-level tasks

Wed 31.05.2023  Chapter 05: Correspondence Estimation (Part 3)
Thu 01.06.2023  Chapter 06: 2D-2D Geometry (Part 1)

Wed 07.06.2023  Chapter 06: 2D-2D Geometry (Part 2)
Thu 08.06.2023  No lecture (Public Holiday)

Wed 14.06.2023  Chapter 06: 2D-2D Geometry (Part 3)
Thu 15.06.2023  Chapter 06: 2D-2D Geometry (Part 4)

Wed 21.06.2023 Chapter 07: 3D-2D Geometry 
Thu 22.06.2023  Chapter 08: 3D-3D Geometry

Wed 28.06.2023  Chapter 09: Single-view Geometry 
Thu 29.06.2023  Chapter 10: Combination of Different Configurations

Wed 05.07.2023  Chapter 11: Photometric Error and Direct Method
Thu 06.07.2023  Chapter 12: Bundle Adjustment

Wed 12.07.2023  Chapter 13: Robust Estimation 
Thu 13.07.2023  Exam Information and Knowledge Review

Wed 19.07.2023  Chapter 14: SLAM and SFM
Thu 20.07.2023  No Onsite Lecture. Alternative: Online Meeting for Question Answering

Videos and reading materials
about the combination of deep 

learning and multi-view geometry

https://cvg.cit.tum.de/teaching/ss2023/cv2
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 Problem Formulation
 Expectation-maximization 
 RANSAC
 Robust Kernel (M-estimator)

Today’s Outline
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Problem Formulation
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 Definition of Outliers

 Recall that correspondences are obtained based on descriptor similarity or other 
strategies. 

 In practice, correspondences are usually contaminated by outliers (i.e., mis-matches).

Image 1 Image 2

Repetitive 
patterns
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Problem Formulation
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 Definition of Outliers

 Reasons for outliers
• Repetitive patterns (i.e., features with the same appearance)
• Geometric and photometric changes 
• Large image noise
• Occlusions
• Moving objects
• Image or motion blur
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Problem Formulation
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 Effects of Outliers for Visual Odometry

Inaccurate trajectory caused by noise:                        Wrong trajectory caused by outliers:

This case was introduced before
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Problem Formulation
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 Our Goal

 Robust Estimation is essential for reliable and accurate localization.
 We aim to remove outliers and also estimate the model parameters, e.g., camera pose.

Image 1 Image 2
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Problem Formulation
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 Dominant Methods for Outlier Removal

 Expectation-maximization
 RANSAC
 Robust kernel (M-estimator)
…

 They can be applied to various geometric problems whose goal is to estimate the 
parameters of a model from the data, e.g.,

• Essential matrix estimation
• Fundamental matrix estimation
• PnP
• Homography estimation
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Expectation Maximization (EM) algorithm
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 Overview

 EM is a general method for model fitting in the presence of outliers.

 At each iteration, it performs E-step and M-step.
• E-step is to assign each data a weight/outlier ratio
• M-step is to compute model parameters based on a weighted least-squares fitting.

 Let’s take straight line fitting problem for example.
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Expectation Maximization (EM) algorithm
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 Pipeline and Example

 Problem definition
Given a set of point perturbed by outliers, we aim to 
simultaneously remove outliers and estimate 2D line 
expressed by (slope, intercept) or homogenous 
coordinates (a, b, c).
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Expectation Maximization (EM) algorithm
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 Pipeline and Example

 Step 1: Initialization based on least-squares fitting

• Estimate line parameters that fit all data points, using least 
squares:                   , where 𝒓𝒓𝒊𝒊 is the point-to-line distance.

• We do not have prior information about which points are inliers or 
outliers, so we have to treat them equally.

• The result is obviously affected by outliers.
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Expectation Maximization (EM) algorithm
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 Pipeline and Example

 Step 2: E-step of an iteration: weight assignment

• Based on the estimated model (line), calculate residual error 𝑟𝑟𝑖𝑖
for each data point.

• Use residual error to assign each data a weight. Weight should 
be inversely proportional to the error, e.g., 𝑤𝑤𝑖𝑖=𝑒𝑒−𝑟𝑟𝑖𝑖

• This weight from zero to 1 is the probability that a data is an 
inlier.
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Expectation Maximization (EM) algorithm
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 Pipeline and Example

 Step 3: M-step of an iteration: re-estimation of 
model parameters.

• Formulate a weighted least-squares loss:   

• The weighted least-squares solution is the updated 
parameter. 

• Intuitively, it should be better than the initial least-squares 
solution.
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Expectation Maximization (EM) algorithm
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 Pipeline and Example

 Step 4: Alternately perform step 2 and step 3 till 
convergence. 
Accordingly, the optimal parameters are obtained.

 Step 5: Treat the data whose weights are higher 
than a threshold (e.g., 0.8) as inliers.
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Expectation Maximization (EM) algorithm
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 Limitation of EM algorithm

 It is highly sensitive to the initialization

Recall that EM selects the initial solution by minimizing the sum of squared residuals           . 

Initialization is strongly affected by a few large error values (i.e., outliers).

Thus, EM converges to the wrong solution if the initial solution is far from the ground-
truth one.
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RANSAC
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 Overview

 Random sample consensus (RANSAC) is one of the most popular methods for model 
fitting in the presence of outliers.

 Main advantage: It is not sensitive to the initial condition. 

 Another important property: It is non-deterministic. You get a different result every 
time you run it

 Similar to EM algorithm, RANSAC can be applied to all sorts of geometric problems 
where the goal is to estimate the parameters of a model from the data.
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RANSAC
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 Pipeline and Examples

 Let’s first introduce RANSAC for line fitting and then 
see how we can use it to do robust camera pose 
estimation.

 Given a set of points perturbed by outliers, we aim 
to simultaneously remove outliers and estimate 2D 
line’s parameters (slope, intercept) or homogenous 
coordinates (a, b, c).
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RANSAC
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 Pipeline and Examples

 Step 1: Sample “minimal-case” data at random

• RANSAC typically considers the minimal case when conducting 
sampling. 

• Two sampled points are the minimal case of 2D line fitting.

• It samples 5 point correspondences for relative pose estimation 
based on 5-point method.

• It samples 4 point correspondences for homography estimation.
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RANSAC
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 Pipeline and Examples

 Step 2: Calculate model parameters using the sampled 
data (this step is also called “hypothesizing a model”)

• Given two points, we can easily compute a 2D line.

• For camera pose estimation, we can use five sampled point 
correspondences to estimate the camera pose based on five-point 
method.

• Note: We do not care about the correctness of the sampled data at 
this step. Regardless of a valid or invalid sampling, we directly use 
the sampled data to compute the model parameters.
Mathematically, we just generate a system and solve this system.
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RANSAC
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 Pipeline and Examples

 Step 3: For each data, calculate the residual error 
w.r.t. the computed/hypothesized model

• The sampled data must satisfy the fitted model, but the 
other data may not.

• For line fitting, the residual error is the point-to-line distance.

• For camera pose estimation, the residual error may be point-
to-epipolar line distance.
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RANSAC
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 Pipeline and Examples

 Step 4: Select data that support current hypothesis 
(this step is also called “inlier set generation”)

• If a data can be roughly fitted by the model estimated by the 
sampled data, we call it an “inlier” w.r.t this model.

• Note: an inlier may be a true inlier if the model is correct; it 
may be a pseudo inlier if the model is wrong.

• For each model, we can associate it with an inlier set.
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RANSAC
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 Pipeline and Examples

 Step 4: Select data that support current hypothesis 
(this step is also called “inlier set generation”)

• Intuitively, the cardinalities of inlier sets associated with 
different models are different. 

• If a model is computed by the sampled true inliers, its 
associated inlier set should lead to a high cardinality. 
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RANSAC
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 Pipeline and Examples

 Step 5: Repeat from step 1 to step 4 𝒌𝒌 times, i.e., conduct 𝒌𝒌 iterations

• We hypothesized/estimated 𝒌𝒌 models after 𝒌𝒌 samplings.
• 𝒌𝒌 models are associated with 𝒌𝒌 inlier sets.
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RANSAC
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 Pipeline and Examples

 Step 6: Inlier set maximization

• Select the inlier set with the highest cardinality.

• The model associated with this inlier set (see blue line) should be 
estimated by two sampled true inliers (see red points). Most of 
other true inliers (see green points) can be fitted by this model.

• There is still a room for accuracy improvement due to the noise 
of sampled true inliers.
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RANSAC
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 Pipeline and Examples

 Step 7: Calculate the final model parameters using the 
optimal inlier set

• Use all the true inliers of the optimal inlier set to compute the 
least-squares solution.

• The result obtained at step 6 is already good.

• This step can further improve accuracy by noise compensation. 
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 Discussion about Minimal and Quasi-minimal Cases

 For relative pose estimation with outliers, RANSAC typically samples 5 points and 
estimates the essential matrix based on five-point method at each iteration. This is a 
typical minimal case.

 In practice, we can also let RANSAC sample 8 points and estimate the essential matrix 
based on eight-point method. This is a quasi-minimal case.

 The minimal case is preferred. Reason: In RANSAC, we should guarantee at least one 
valid sampling (i.e., we should sample a set of pure inliers at a certain iteration). 
Simultaneously sampling 5 true inliers is easier than sampling 8 true inliers.

24/33
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 Discussion about Minimal and Non-minimal Cases

 Recap on DLT for 3D-2D geometry (perspective n points)

 6 point correspondences lead to a well-determined linear system.
 > 6 point correspondences lead to an over-determined linear system. We can obtain a 

least-squares solution based on SVD.

Constraint of one correspondence

Parameters of transformation

25/33
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 Discussion about Minimal and Non-minimal Cases

How to choose the minimal case or redundant case?

 Minimal case
• If we cannot guarantee that all the correspondences are inliers, we consider the integration of minimal 

case and RANSAC. 
• RANSAC samples a minimal number of points (e.g., 6 for DLT) N times. We use each set of points to 

generate a well-determined system. Accordingly, we have N well-determined systems.
• Based on inlier set maximization, we select the best system from N candidate systems.

 Redundant Case
• If we have prior knowledge that all the correspondences are inliers, we can use all the correspondences 

to generate an over-determined linear system. The result is the least-squares solution (helpful for noise 
compensation). Computing least-squares solution is the final step of RANSAC.

26/33
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 Discussion about Minimal and Non-minimal Cases

 The more inlier points we use, the higher the algorithm accuracy is.
 The following is an experimental Illustration of the advantage of non-minimal case.

An example of PnP in the outlier-free case. 27/33
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RANSAC
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 Comparison Between EM and RANSAC

 RANSAC is non-deterministic: every time you run it you may get a different result. The 
reason is that RANSAC selects minimal-case solution at random, leading to a random 
hypotheses’ generation process. Conversely, EM is deterministic.

 RANSAC is not sensitive to initial condition, but EM is sensitive.
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RANSAC
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 Discussion about Number of Iterations

 Let us take 2D line fitting for example.
• Ideally: check all possible combinations of 2 points in a dataset of N points.

• Number of all pairwise combinations:

• However, it is computationally unfeasible if 𝑁𝑁 is too large.



Computer Vision Group

RANSAC
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 Discussion about Number of Iterations

Do we really need to check all possibilities or can we stop RANSAC after some iterations?
• It is feasible to only validate a subset of all combinations, if we have a rough estimate of the inlier ratio in 

our dataset.
• This can be done in a probabilistic way. Derivation is relatively complicated. In our context, we only 

consider the following conclusion [1].
• At a certain confidence level p (such as 99%), we can guarantee that we have at least one valid sampling 

among k samplings.

A parameter computed by inlier ratio

[1] M. Fischler and R. Bolles, “Random sample consensus: A paradigm for model fitting with applications to image analysis and 
automated cartography,” Communications of the ACM, 1981.
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Robust Kernel (M-estimator)
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 Overview

 Recap on photometric loss for direct SLAM

Known

3D point back-projected by 
unknown depth

Unknown pose

M-estimator such as L2, L1, Huber …
Error (e.g., photometric error or re-
projection error of a pair of points)

M-estimator 
functions (e.g., 
L2, L1, Huber)



L2 function (A quadratic function)

L1 function
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Robust Kernel (M-estimator)
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 An Intuitive Illustration

 Let’s take straight line fitting problem for example.

• Recall that we aim to minimize an objective function.
• L2 loss: Sum of squared errors is sensitive to outliers since it 

will amplify the effect of outliers.
• To solve this problem, Huber loss [1] was proposed. It is the 

combination of L1 and L2 losses.

[1] Huber, Peter J. (1964). "Robust Estimation of a Location 
Parameter". Annals of Statistics. 53 (1): 73–101
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Summary
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 Problem Formulation
 Expectation-maximization 
 RANSAC
 Robust Kernel (M-estimator)
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Thank you for your listening!
If you have any questions, please come to me :-)
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