

Multiple View Geometry: Exercise 3

Dr. Haoang Li, Daniil Sinitsyn, Sergei Solonets, Viktoria Ehm Computer Vision Group, TU Munich Wednesdays 16:00-18:15 at Hörsaal 2, "Interims I" (5620.01.102), and on RBG Live

Exercise: May 24, 2023

Image Formation

We are looking at the formation of an image in camera coordinates $\mathbf{X} = (X \ Y \ Z \ 1)^{\top}$. The following relation of homogeneous pixel coordinates \mathbf{x}' and \mathbf{X} holds:

$$\lambda \mathbf{x}' = K \Pi_0 \mathbf{X} \tag{1}$$

with the intrinsic camera matrix K.

Extra Infos on intrinsic camera matrix:

If the camera is not centered at the optical center, we have an additional translation o_x , o_y and if pixel coordinates do not have unit scale, we need to introduce an additional scaling in x- and y -direction by s_x and s_y . If the pixels are not rectangular, we have a skew factor s_θ . You can assume that focal lengths along the u and v axes are identical. Accordingly, they are both denoted by f. To clearly differentiate between camera coordinates and pixel coordinates, call the pixel coordinates u and v: $\mathbf{x}' = (u \ v \ 1)^{\top}$. The pixel coordinates (u, v, 1) as a function of homogeneous camera coordinates \mathbf{X} are then given by

$$\lambda \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = \underbrace{\begin{pmatrix} s_x & s_\theta & o_x \\ 0 & s_y & o_y \\ 0 & 0 & 1 \end{pmatrix}}_{\equiv K_s} \underbrace{\begin{pmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\equiv K_f} \underbrace{\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}}_{\equiv \Pi_0} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$
(2)

After the perspective projection Π_0 (with focal length 1), we have an additional transformation which depends on the (intrinsic) camera parameters. This can be expressed by the intrinsic parameter matrix $K = K_s K_f$.

Furthermore, let the non-homogeneous camera coordinates be $\tilde{\mathbf{X}} := \Pi_0 \mathbf{X} = (X Y Z)^{\top}$. (1) is then equivalent to

$$\lambda \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = K \tilde{\mathbf{X}} . \tag{3}$$

Let $s_x = s_y = 1$ and $s_\theta = 0$ in the intrinsic camera matrix.

1. Compute λ and show that (3) is equivalent to

$$u = \frac{fX}{Z} + o_x , \quad v = \frac{fY}{Z} + o_y . \tag{4}$$

2. A classic ambiguity of the perspective projection is that one cannot tell an object from another object that is exactly *twice as big but twice as far*. Explain why this is true.

3. For a camera with f = 540, o_x = 320 and o_y = 240, compute the pixel coordinates u and v of a point X = (60 100 180)^T. Explain with the help of (b) why the units of X are not needed for this task. Will the projected point be in the image if it has dimensions 640 × 480?

We define the generic projection π of $\tilde{\mathbf{X}}$ to 2D coordinates as follows:

$$\pi(\tilde{\mathbf{X}}) := \begin{pmatrix} X/Z\\Y/Z \end{pmatrix}$$
(5)

4. Using the generic projection π , show that (4) — and therefore also (1) and (3) — is equivalent to

$$\begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = K \begin{pmatrix} \pi(\tilde{\mathbf{X}}) \\ 1 \end{pmatrix} .$$
 (6)