Multiple View Geometry: Exercise 3

Dr. Haoang Li, Daniil Sinitsyn, Sergei Solonets, Viktoria Ehm
Computer Vision Group, TU Munich
Wednesdays 16:00-18:15 at Hörsaal 2, "Interims I" (5620.01.102), and on RBG Live

Exercise: May 24, 2023

Image Formation

We are looking at the formation of an image in camera coordinates $\mathbf{X}=\left(\begin{array}{ll}X & Y \\ Z & 1\end{array}\right)^{\top}$. The following relation of homogeneous pixel coordinates \mathbf{x}^{\prime} and \mathbf{X} holds:

$$
\begin{equation*}
\lambda \mathbf{x}^{\prime}=K \Pi_{0} \mathbf{X} \tag{1}
\end{equation*}
$$

with the intrinsic camera matrix K.

Extra Infos on intrinsic camera matrix:

If the camera is not centered at the optical center, we have an additional translation o_{x}, o_{y} and if pixel coordinates do not have unit scale, we need to introduce an additional scaling in x - and y -direction by s_{x} and s_{y}. If the pixels are not rectangular, we have a skew factor s_{θ}. You can assume that focal lengths along the u and v axes are identical. Accordingly, they are both denoted by f. To clearly differentiate between camera coordinates and pixel coordinates, call the pixel coordinates u and v : $\mathbf{x}^{\prime}=\left(\begin{array}{ll}u & v\end{array}\right)^{\top}$. The pixel coordinates $(u, v, 1)$ as a function of homogeneous camera coordinates \mathbf{X} are then given by

$$
\lambda\left(\begin{array}{l}
u \tag{2}\\
v \\
1
\end{array}\right)=\underbrace{\left(\begin{array}{ccc}
s_{x} & s_{\theta} & o_{x} \\
0 & s_{y} & o_{y} \\
0 & 0 & 1
\end{array}\right)}_{\equiv K_{s}} \underbrace{\left(\begin{array}{ccc}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right)}_{\equiv K_{f}} \underbrace{\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)}_{\equiv \Pi_{0}}\left(\begin{array}{l}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

After the perspective projection Π_{0} (with focal length 1), we have an additional transformation which depends on the (intrinsic) camera parameters. This can be expressed by the intrinsic parameter matrix $K=K_{s} K_{f}$.
Furthermore, let the non-homogeneous camera coordinates be $\tilde{\mathbf{X}}:=\Pi_{0} \mathbf{X}=(X Y Z)^{\top}$. (1) is then equivalent to

$$
\lambda\left(\begin{array}{l}
u \tag{3}\\
v \\
1
\end{array}\right)=K \tilde{\mathbf{X}}
$$

Let $s_{x}=s_{y}=1$ and $s_{\theta}=0$ in the intrinsic camera matrix.

1. Compute λ and show that (3) is equivalent to

$$
\begin{equation*}
u=\frac{f X}{Z}+o_{x}, \quad v=\frac{f Y}{Z}+o_{y} . \tag{4}
\end{equation*}
$$

2. A classic ambiguity of the perspective projection is that one cannot tell an object from another object that is exactly twice as big but twice as far. Explain why this is true.
3. For a camera with $f=540, o_{x}=320$ and $o_{y}=240$, compute the pixel coordinates u and v of a point $\tilde{\mathbf{X}}=(60100180)^{\top}$. Explain with the help of (b) why the units of $\tilde{\mathbf{X}}$ are not needed for this task. Will the projected point be in the image if it has dimensions 640×480 ?

We define the generic projection π of $\tilde{\mathbf{X}}$ to 2 D coordinates as follows:

$$
\begin{equation*}
\pi(\tilde{\mathbf{X}}):=\binom{X / Z}{Y / Z} \tag{5}
\end{equation*}
$$

4. Using the generic projection π, show that (4) - and therefore also (1) and (3) - is equivalent to

$$
\left(\begin{array}{l}
u \tag{6}\\
v \\
1
\end{array}\right)=K\binom{\pi(\tilde{\mathbf{X}})}{1}
$$

