Multiple View Geometry: Exercise 1

Dr. Haoang Li, Daniil Sinitsyn, Sergei Solonets, Viktoria Ehm
Computer Vision Group, TU Munich
Wednesdays 16:00-18:15 at Hörsaal 2, "Interims I" (5620.01.102), and on RBG Live

Exercise: May 03, 2023

Math Background

1. Show for each of the following sets (1) whether they are linearly independent, (2) whether they span \mathbb{R}^{3} and (3) whether they form a basis of \mathbb{R}^{3} :
(a) $B_{1}=\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$
(b) $B_{2}=\left\{\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)\right\}$
(c) $B_{3}=\left\{\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}3 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)\right\}$
2. Which of the following sets forms a group (with matrix-multiplication)? Prove or disprove!
(a) $G_{1}:=\left\{A \in \mathbb{R}^{n \times n} \mid \operatorname{det}(A) \neq 0 \wedge A^{\top}=A\right\}$
(b) $G_{2}:=\left\{A \in \mathbb{R}^{n \times n} \mid \operatorname{det}(A)=-1\right\}$
(c) $G_{3}:=\left\{A \in \mathbb{R}^{n \times n} \mid \operatorname{det}(A)>0\right\}$
3. Prove or disprove: There exist vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{5} \in \mathbb{R}^{3} \backslash\{\mathbf{0}\}$, which are pairwise orthogonal, i.e.

$$
\forall i, j=1, \ldots, 5: \quad i \neq j \Longrightarrow\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle=0
$$

4. Which groups have you seen in the lecture? Write down the names and the correct inclusions! (e.g.: group $\mathrm{A} \subset$ group B)
5. Let A be a symmetric matrix, and λ_{a}, λ_{b} eigenvalues with eigenvectors v_{a} and v_{b}. Prove: if v_{a} and v_{b} are not orthogonal, it follows: $\lambda_{a}=\lambda_{b}$.

Hint: What can you say about $\left\langle A v_{a}, v_{b}\right\rangle$?
6. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with the orthonormal basis of eigenvectors v_{1}, \ldots, v_{n} and eigenvalues $\lambda_{1} \geq \ldots \geq \lambda_{n}$. Find all vectors x, that minimize the following term:

$$
\min _{\|x\|=1} x^{\top} A x
$$

How many solutions exist? How can the term be maximized?
Hint: Use the expression $x=\sum_{i=1}^{n} \alpha_{i} v_{i}$ with coefficients $\alpha_{i} \in \mathbb{R}$ and compute appropriate coefficients!
7. Let $A \in \mathbb{R}^{m \times n}$. Prove that $\operatorname{kernel}(A)=\operatorname{kernel}\left(A^{\top} A\right)$.

Hint: Consider a) $x \in \operatorname{kernel}(A) \quad \Rightarrow x \in \operatorname{kernel}\left(A^{\top} A\right)$ and \quad b) $x \in \operatorname{kernel}\left(A^{\top} A\right) \quad \Rightarrow x \in \operatorname{kernel}(A)$.
8. Singular Value Decomposition (SVD)

Let $A=U S V^{\top}$ be the SVD of A.
(a) Write down possible dimensions for A, U, S and V.
(b) What are the similarities and differences between the SVD and the eigenvalue decomposition?
(c) What do you know about the relationship between U, S, V and the eigenvalues and eigenvectors of $A^{\top} A$ and $A A^{\top}$?
(d) What is the interpretation of the entries in S and what do the entries of S tell us about A ?

