

Multiple View Geometry: Exercise 1

Dr. Haoang Li, Daniil Sinitsyn, Sergei Solonets, Viktoria Ehm Computer Vision Group, TU Munich Wednesdays 16:00-18:15 at Hörsaal 2, "Interims I" (5620.01.102), and on RBG Live

Exercise: May 03, 2023

Math Background

1. Show for each of the following sets (1) whether they are linearly independent, (2) whether they span \mathbb{R}^3 and (3) whether they form a basis of \mathbb{R}^3 :

(a)
$$B_1 = \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$$

(b) $B_2 = \left\{ \begin{pmatrix} 2\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix} \right\}$
(c) $B_3 = \left\{ \begin{pmatrix} 2\\1\\0 \end{pmatrix}, \begin{pmatrix} 3\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix} \right\}$

- 2. Which of the following sets forms a group (with matrix-multiplication)? Prove or disprove!
 - (a) $G_1 := \left\{ A \in \mathbb{R}^{n \times n} | \det(A) \neq 0 \land A^\top = A \right\}$
 - (b) $G_2 := \{A \in \mathbb{R}^{n \times n} | \det(A) = -1\}$
 - (c) $G_3 := \{A \in \mathbb{R}^{n \times n} | \det(A) > 0\}$
- 3. Prove or disprove: There exist vectors $\mathbf{v}_1, ..., \mathbf{v}_5 \in \mathbb{R}^3 \setminus \{\mathbf{0}\}$, which are pairwise orthogonal, i.e.

$$\forall i, j = 1, ..., 5: \quad i \neq j \implies \langle \mathbf{v}_i, \mathbf{v}_j \rangle = 0$$

- 4. Which groups have you seen in the lecture? Write down the names and the correct inclusions! (e.g.: group $A \subset$ group B)
- 5. Let A be a symmetric matrix, and λ_a , λ_b eigenvalues with eigenvectors v_a and v_b . Prove: if v_a and v_b are not orthogonal, it follows: $\lambda_a = \lambda_b$.

Hint: What can you say about $\langle Av_a, v_b \rangle$?

6. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with the orthonormal basis of eigenvectors v_1, \ldots, v_n and eigenvalues $\lambda_1 \ge \ldots \ge \lambda_n$. Find all vectors x, that minimize the following term:

$$\min_{||x||=1} x^{\top} A x$$

How many solutions exist? How can the term be maximized?

Hint: Use the expression $x = \sum_{i=1}^{n} \alpha_i v_i$ with coefficients $\alpha_i \in \mathbb{R}$ and compute appropriate coefficients!

7. Let $A \in \mathbb{R}^{m \times n}$. Prove that $\operatorname{kernel}(A) = \operatorname{kernel}(A^{\top}A)$.

Hint: Consider a) $x \in \text{kernel}(A) \Rightarrow x \in \text{kernel}(A^{\top}A)$ and b) $x \in \text{kernel}(A^{\top}A) \Rightarrow x \in \text{kernel}(A).$

8. Singular Value Decomposition (SVD)

Let $A = USV^{\top}$ be the SVD of A.

- (a) Write down possible dimensions for A, U, S and V.
- (b) What are the similarities and differences between the SVD and the eigenvalue decomposition?
- (c) What do you know about the relationship between U, S, V and the eigenvalues and eigenvectors of $A^{\top}A$ and AA^{\top} ?
- (d) What is the interpretation of the entries in S and what do the entries of S tell us about A?