Multiple View Geometry: Exercise 4

Dr. Haoang Li, Daniil Sinitsyn, Sergei Solonets, Viktoria Ehm
Computer Vision Group, TU Munich
Wednesdays 16:00-18:15 at Hörsaal 2, "Interims I" (5620.01.102), and on RBG Live

Exercise: May 31, 2023

The Lucas-Kanade method

The weighted Lucas-Kanade energy $E(\mathbf{v})$ is defined as

$$
E(\mathbf{v})=\int_{W(\mathbf{x})} G\left(\mathbf{x}-\mathbf{x}^{\prime}\right)\left\|\nabla I\left(\mathbf{x}^{\prime}, t\right)^{\top} \mathbf{v}+\partial_{t} I\left(\mathbf{x}^{\prime}, t\right)\right\|^{2} \mathrm{~d} \mathbf{x}^{\prime}
$$

Assume that the weighting function G is chosen such that $G\left(\mathbf{x}-\mathbf{x}^{\prime}\right)=0$ for any $\mathbf{x}^{\prime} \notin W(\mathbf{x})$. In the following, we note $I_{t}=\partial_{t} I$ and $\left(I_{x_{1}}, I_{x_{2}}\right)^{\top}=\nabla I$.

1. Prove that the minimizer \mathbf{b} of $E(\mathbf{v})$ can be written as

$$
\mathbf{b}=-M^{-1} \mathbf{q}
$$

where the entries of M and \mathbf{q} are given by

$$
m_{i j}=G *\left(I_{x_{i}} \cdot I_{x_{j}}\right) \quad \text { and } \quad q_{i}=G *\left(I_{x_{i}} \cdot I_{t}\right)
$$

2. Show that if the gradient direction is constant in $W(\mathbf{x})$, i.e. $\nabla I\left(\mathbf{x}^{\prime}, t\right)=\alpha\left(\mathbf{x}^{\prime}, t\right) \mathbf{u}$ for a scalar function α and a 2D vector \mathbf{u}, M is not invertible.

Explain how this observation is related to the aperture problem.
Note: In the formalism of Lucas and Kanade, one cannot always estimate a translational motion. This problem is often referred to as the aperture problem. It arises for example, if the region in the window $W(x)$ around the point x has entirely constant intensity (for example a white wall), because then $\delta I(x)=0$ and $I_{t}(x)=0$ for all points in the window.
3. Write down explicit expressions for the two components b_{1} and b_{2} of the minimizer in terms of $m_{i j}$ and q_{i}.

Note: $G * A$ denotes the convolution of image A with a kernel $G: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and is defined as

$$
G * A=\int_{\mathbb{R}^{2}} G\left(\mathrm{x}-\mathrm{x}^{\prime}\right) A\left(\mathrm{x}^{\prime}\right) \mathrm{d} \mathrm{x}^{\prime} .
$$

