

Multiple View Geometry: Exercise 4

Dr. Haoang Li, Daniil Sinitsyn, Sergei Solonets, Viktoria Ehm Computer Vision Group, TU Munich Wednesdays 16:00-18:15 at Hörsaal 2, "Interims I" (5620.01.102), and on RBG Live

Exercise: May 31, 2023

The Lucas-Kanade method

The weighted Lucas-Kanade energy $E(\mathbf{v})$ is defined as

$$E(\mathbf{v}) = \int_{W(\mathbf{x})} G(\mathbf{x} - \mathbf{x}') \left\| \nabla I(\mathbf{x}', t)^{\top} \mathbf{v} + \partial_t I(\mathbf{x}', t) \right\|^2 d\mathbf{x}'.$$

Assume that the weighting function G is chosen such that $G(\mathbf{x} - \mathbf{x}') = 0$ for any $\mathbf{x}' \notin W(\mathbf{x})$. In the following, we note $I_t = \partial_t I$ and $(I_{x_1}, I_{x_2})^\top = \nabla I$.

1. Prove that the minimizer **b** of $E(\mathbf{v})$ can be written as

$$\mathbf{b} = -M^{-1}\mathbf{q}$$

where the entries of M and q are given by

$$m_{ij} = G * (I_{x_i} \cdot I_{x_j})$$
 and $q_i = G * (I_{x_i} \cdot I_t)$

2. Show that if the gradient direction is constant in $W(\mathbf{x})$, i.e. $\nabla I(\mathbf{x}', t) = \alpha(\mathbf{x}', t)\mathbf{u}$ for a scalar function α and a 2D vector \mathbf{u} , M is not invertible.

Explain how this observation is related to the aperture problem.

Note: In the formalism of Lucas and Kanade, one cannot always estimate a translational motion. This problem is often referred to as the aperture problem. It arises for example, if the region in the window W(x) around the point x has entirely constant intensity (for example a white wall), because then $\delta I(x) = 0$ and $I_t(x) = 0$ for all points in the window.

3. Write down explicit expressions for the two components b_1 and b_2 of the minimizer in terms of m_{ij} and q_i .

Note: G * A denotes the convolution of image A with a kernel $G : \mathbb{R}^2 \to \mathbb{R}$ and is defined as

$$G * A = \int_{\mathbb{R}^2} G(\mathbf{x} - \mathbf{x}') A(\mathbf{x}') d\mathbf{x}'.$$