

Multiple View Geometry: Exercise 5

Dr. Haoang Li, Daniil Sinitsyn, Sergei Solonets, Viktoria Ehm
Computer Vision Group, TU Munich
Wednesdays 16:00-18:15 at Hörsaal 2, "Interims I" (5620.01.102), and on RBG Live

Exercise: June 14, 2023

Note: For more readability we will call T_{\times}from the lecture \hat{T} in this exercise sheet.

1. In this task, we are considering the non-zero essential matrix $E=\hat{T} R$ with $T \in \mathbb{R}^{3}$ and $R \in \mathrm{SO}(3)$. Let $R_{Z}\left(\pm \frac{\pi}{2}\right)$ be the rotation by $\pm \frac{\pi}{2}$ around the z-axis.

Extra Information: The non-zero essential matrix has the singular value decomposition $E=$ $U \Sigma V^{T}$ with $\Sigma=\operatorname{diag}\{\sigma, \sigma, 0\}$ for some $\sigma>0$ and $U, V \in \operatorname{SO}(3)$. There exist exactly two options for (\hat{T}, R) :

$$
\begin{array}{ll}
\left(\hat{T}_{1}, R_{1}\right)=\left(U R_{Z}\left(+\frac{\pi}{2}\right) \Sigma U^{\top},\right. & \left.U R_{Z}\left(+\frac{\pi}{2}\right)^{\top} V^{\top}\right) \\
\left(\hat{T}_{2}, R_{2}\right)=\left(U R_{Z}\left(-\frac{\pi}{2}\right) \Sigma U^{\top},\right. & \left.U R_{Z}\left(-\frac{\pi}{2}\right)^{\top} V^{\top}\right) \tag{2}
\end{array}
$$

Show that by using (1) and (2), the following properties hold:
(a) $\hat{T}_{1}, \hat{T}_{2} \in \operatorname{so}$ (3) \quad (i.e. \hat{T}_{1}, \hat{T}_{2} are skew-symmetric matrices)
(b) $R_{1}, R_{2} \in \mathrm{SO}(3) \quad$ (i.e. R_{1}, R_{2} are rotation matrices)
2. Consider the matrices $E=\hat{T} R$ and $H=R+T u^{\top}$ with $R \in \mathbb{R}^{3 \times 3}$ and $T, u \in \mathbb{R}^{3}$. Show that the following holds:
(a) $E=\hat{T} H$
(b) $H^{\top} E+E^{\top} H=0$
3. Let $F \in \mathbb{R}^{3 \times 3}$ be the fundamental matrix for the cameras C_{1} and C_{2}. Show that the following holds for the epipoles e_{1} and e_{2} :

$$
F e_{1}=0 \quad \text { and } \quad e_{2}^{\top} F=0
$$

Hint: Use the visualizations and information from the lecture (Chapter 6, Slides: 15/16) to determine e_{1} and e_{2}.

