Multiple View Geometry: Exercise 1

Dr. Haoang Li, Daniil Sinitsyn, Sergei Solonets, Viktoria Ehm
Computer Vision Group, TU Munich
Wednesdays 16:00-18:15 at Hörsaal 2, "Interims I" (5620.01.102), and on RBG Live

Exercise: May 03, 2023

Math Background

1. Show for each of the following sets (1) whether they are linearly independent, (2) whether they span \mathbb{R}^{3} and (3) whether they form a basis of \mathbb{R}^{3} :
(a) $B_{1}=\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$

The set B_{1} (1) is linearly independent, (2) spans \mathbb{R}^{3}, (3) forms a basis of \mathbb{R}^{3}.
This can be shown by building a matrix and calculating the determinant:

$$
\operatorname{det}\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)=1 \neq 0
$$

As the determinant is not zero, we know that the vectors are linearly independent. Three linearly independent vectors in \mathbb{R}^{3} span \mathbb{R}^{3}. A set is a basis of \mathbb{R}^{3} if it is linearly independent and spans \mathbb{R}^{3}, so B_{1} forms a basis.
(b) $B_{2}=\left\{\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)\right\}$

The set B_{2} (1) is linearly independent, (2) does not span \mathbb{R}^{3}, (3) does not form a basis of \mathbb{R}^{3}.
Since the two vectors are not parallel, linear independence is given. To span \mathbb{R}^{3}, there are at least three vectors needed. Hence, the set cannot be a basis either.
(c) $B_{3}=\left\{\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}3 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)\right\}$

The set $B_{3}(1)$ is not linearly independent, (2) spans \mathbb{R}^{3}, (3) does not form a basis of \mathbb{R}^{3}. In \mathbb{R}^{3}, there cannot be more than three independent vectors. Using e.g. the determinant, one finds that any three of the four vectors form a basis of \mathbb{R}^{3} and thus the four together span \mathbb{R}^{3}. Since they are not linearly independent, they cannot form a basis.
2. Which of the following sets forms a group (with matrix-multiplication)? Prove or disprove!
(a) $G_{1}:=\left\{A \in \mathbb{R}^{n \times n} \mid \operatorname{det}(A) \neq 0 \wedge A^{\top}=A\right\}$

The set is not closed under multiplication, thus no group. To show this, one counterexample is enough: choose $n=3$ and

$$
A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
2 & 0 & 4 \\
3 & 4 & 5
\end{array}\right) \in G_{1}, \quad B=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right) \in G_{1}: \quad A B=\left(\begin{array}{ccc}
1 & 4 & 9 \\
2 & 0 & 12 \\
3 & 8 & 15
\end{array}\right) \notin G_{1}
$$

Note:
You can also show that if G_{1} was a group, for any $A, B \in G_{1},(A B)^{\top}=A B$ would have to be true, but is not. This is equivalent to saying $B A=A B$ would have to be true:

$$
(A B)^{\top}=B^{\top} A^{\top}=B A
$$

However, to show that there exist A and B in G_{1} for which $A B \neq B A$ (which is an important step in the proof!), the easiest way again is to choose a concrete counter-example.
(b) $G_{2}:=\left\{A \in \mathbb{R}^{n \times n} \mid \operatorname{det}(A)=-1\right\}$

The set contains no neutral element, thus no group:

$$
\operatorname{det}\left(\operatorname{Id}_{n}\right)=1 \neq-1 \quad \Rightarrow \quad \operatorname{Id}_{n} \notin G_{2}
$$

(c) $G_{3}:=\left\{A \in \mathbb{R}^{n \times n} \mid \operatorname{det}(A)>0\right\}$

The set forms a group. The easiest way to show this is to show that G_{3} is a subgroup of the general linear group $G L(n)$. We simply need to show that for any two elements A, B of $G_{3}, A B^{-1}$ is also in $G_{3}:{ }^{1}$ for $A, B \in G_{3}$,

$$
\operatorname{det}\left(A B^{-1}\right)=\underbrace{\operatorname{det}(A)}_{>0} \underbrace{[\operatorname{det}(B)]^{-1}}_{>0}>0 \quad \Rightarrow \quad A B^{-1} \in G_{3}
$$

Thus, G_{3} is a subgroup of $G L(n)$ and hence a group.
3. Prove or disprove: There exist vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{5} \in \mathbb{R}^{3} \backslash\{\mathbf{0}\}$, which are pairwise orthogonal, i.e.

$$
\forall i, j=1, \ldots, 5: \quad i \neq j \Longrightarrow\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle=0
$$

Assume there exist five pairwise orthogonal, non-zero vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{5} \in \mathbb{R}^{3}$. In \mathbb{R}^{3}, there are at most three linearly independent vectors. Thus, the vectors are linearly dependent, which means

$$
\exists a_{i}: \quad \sum_{i=1}^{5} a_{i} \mathbf{v}_{i}=0
$$

with at least one $a_{i} \neq 0$. Without loss of generality, assume that $a_{1}=-1$, resulting in

$$
\mathbf{v}_{1}=a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}+a_{4} \mathbf{v}_{4}+a_{5} \mathbf{v}_{5}
$$

As the vectors are assumed to be pairwise orthogonal, we can derive

$$
\begin{aligned}
\left\|\mathbf{v}_{1}\right\|^{2} & =\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle= \\
& =\left\langle\mathbf{v}_{1}, a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}+a_{4} \mathbf{v}_{4}+a_{5} \mathbf{v}_{5}\right\rangle= \\
& =a_{2}\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle+a_{3}\left\langle\mathbf{v}_{1}, \mathbf{v}_{3}\right\rangle+a_{4}\left\langle\mathbf{v}_{1}, \mathbf{v}_{4}\right\rangle+a_{5}\left\langle\mathbf{v}_{1}, \mathbf{v}_{5}\right\rangle= \\
& =0+0+0+0=0 \\
\Rightarrow \quad & \mathbf{v}_{1}
\end{aligned}=\mathbf{0},
$$

which contradicts the assumption of pairwise orthogonal, non-zero vectors.
4. Groups and inclusions:

Groups

[^0](a) $S O(n)$: special orthogonal group
(b) $O(n)$: orthogonal group
(c) $G L(n)$: general linear group
(d) $S L(n)$: special linear group
(e) $S E(n)$: special euclidean group (In particular, $S E(3)$ represents the rigid-body motions in \mathbb{R}^{3})
(f) $E(n)$: euclidean group
(g) $A(n)$: affine group

Inclusions
(a) $S O(n) \subset O(n) \subset G L(n)$
(b) $S E(n) \subset E(n) \subset A(n) \subset G L(n+1)$
5. $\lambda_{a}=\frac{\left(\lambda_{a} v_{a}\right)^{\top} v_{b}}{\left\langle v_{a}, v_{b}\right\rangle}=\frac{v_{a}^{\top} A^{\top} v_{b}}{\left\langle v_{a}, v_{b}\right\rangle}=\frac{v_{a}^{\top} A v_{b}}{\left\langle v_{a}, v_{b}\right\rangle}=\frac{v_{a}^{\top}\left(\lambda_{b} v_{b}\right)}{\left\langle v_{a}, v_{b}\right\rangle}=\lambda_{b}$
6. Let V be the orthonormal matrix (i.e. $V^{\top}=V^{-1}$) given by the eigenvectors, and Σ the diagonal matrix containing the eigenvalues:

$$
V=\left(\begin{array}{ccc}
\mid & & \mid \\
v_{1} & \cdots & v_{n} \\
\mid & & \mid
\end{array}\right) \quad \text { and } \quad \Sigma=\left(\begin{array}{ccc}
\lambda_{1} & 0 & \ddots \\
0 & \ddots & 0 \\
\ddots & 0 & \lambda_{n}
\end{array}\right)
$$

As V is a basis, we can express x as a linear combination of the eigenvectors $x=V \alpha$, for some $\alpha \in \mathbb{R}^{n}$. For $\|x\|=1$ we have $\sum_{i} \alpha_{i}^{2}=\alpha^{\top} \alpha=x^{\top} V V^{\top} x=x^{\top} x=1$. This gives

$$
\begin{aligned}
x^{\top} A x & =x^{\top} V \Sigma V^{-1} x \\
& =\alpha^{\top} V^{\top} V \Sigma V^{\top} V \alpha \\
& =\alpha^{\top} \Sigma \alpha=\sum_{i} \alpha_{i}^{2} \lambda_{i}
\end{aligned}
$$

Considering $\sum_{i} \alpha_{i}^{2}=1$, we can conclude that this expression is minimized iff only the α_{i} corresponding to the smallest eigenvalue(s) are non-zero. If $\lambda_{n-1} \not \geqslant \lambda_{n}$, there exist only two solutions ($\alpha_{n}= \pm 1$), otherwise infinitely many.

For maximisation, only the the α_{i} corresponding to the largest eigenvalue(s) can be non-zero.
7. We show that: $\quad x \in \operatorname{kernel}(A) \Leftrightarrow x \in \operatorname{kernel}\left(A^{\top} A\right)$.
$" \Rightarrow ":$ Let $x \in \operatorname{kernel}(A) \quad A^{\top} \underbrace{A x}_{=0}=A^{\top} 0=0 \quad \Rightarrow x \in \operatorname{kernel}\left(A^{\top} A\right)$
$" \Leftarrow ":$ Let $x \in \operatorname{kernel}\left(A^{\top} A\right)$

$$
0=x^{\top} \underbrace{A^{\top} A x}_{=0}=\langle A x, A x\rangle=\|A x\|^{2} \quad \Rightarrow A x=0 \quad \Rightarrow x \in \operatorname{kernel}(A)
$$

8. Singular Value Decomposition (SVD)

Note: There exist multiple slightly different definitions of the SVD. Depending on the convention used, we might have $S \in \mathbb{R}^{m \times n}, S \in \mathbb{R}^{n \times n}$, or $S \in \mathbb{R}^{p \times p}$ where $p=\operatorname{rank}(A)$. In the lecture the third option was presented, for which S is invertible (no zeros on the diagonal). In the following, we present the results for the first option, since that is the one that Matlab's svd function returns by default.
(a) $A \in \mathbb{R}^{m \times n}, U \in \mathbb{R}^{m \times m}, S \in \mathbb{R}^{m \times n}, V \in \mathbb{R}^{n \times n}$
(b) Similarities and differences between SVD and EVD:
i. Both are matrix diagonalization techniques.
ii. The SVD can be applied to matrices $A \in \mathbb{R}^{m \times n}$ with $m \neq n$, whereas the EVD is only applicable to quadratic matrices $\left(A \in \mathbb{R}^{m \times n}\right.$ with $\left.m=n\right)$.
(c) Relationship between U, S, V and the eigenvalues and eigenvectors of $A^{\top} A$ and $A A^{\top}$:
i. $A^{\top} A$: The columns of V are eigenvectors; the squares of the diagonal elements of S are eigenvalues.
ii. $A A^{\top}$: The columns of U are eigenvectors; the squares of the diagonal elements of S are eigenvalues (possibly filled up with zeros).
(d) Entries in S :
i. S is a diagonal matrix. The elements along the diagonal are the singular values of A.
ii. The number of non-zero singular values gives us the rank of the matrix A.

[^0]: ${ }^{1}$ See e.g. https://en.wikipedia.org/wiki/Subgroup_test for a proof if this is not clear to you.

