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Math Background

1. Show for each of the following sets (1) whether they are linearly independent, (2) whether they
spanR3 and (3) whether they form a basis ofR3:

(a) B1 =


1
1
1

 ,

0
1
1

 ,

0
0
1


The set B1 (1) is linearly independent, (2) spansR3, (3) forms a basis ofR3.
This can be shown by building a matrix and calculating the determinant:

det

 1 0 0
1 1 0
1 1 1

 = 1 ̸= 0 .

As the determinant is not zero, we know that the vectors are linearly independent. Three
linearly independent vectors in R3 span R3. A set is a basis ofR3 if it is linearly indepen-
dent and spansR3, so B1 forms a basis.

(b) B2 =


2
1
0

 ,

1
1
0


The set B2 (1) is linearly independent, (2) does not span R3, (3) does not form a basis of
R

3.
Since the two vectors are not parallel, linear independence is given. To span R3, there are
at least three vectors needed. Hence, the set cannot be a basis either.

(c) B3 =


2
1
0

 ,

3
1
0

 ,

0
0
1

 ,

1
0
1


The set B3 (1) is not linearly independent, (2) spansR3, (3) does not form a basis ofR3.
In R3, there cannot be more than three independent vectors. Using e.g. the determinant,
one finds that any three of the four vectors form a basis of R3 and thus the four together
spanR3. Since they are not linearly independent, they cannot form a basis.

2. Which of the following sets forms a group (with matrix-multiplication)? Prove or disprove!

(a) G1 :=
{
A ∈ Rn×n| det(A) ̸= 0 ∧A⊤ = A

}
The set is not closed under multiplication, thus no group. To show this, one counter-
example is enough: choose n = 3 and

A =

1 2 3
2 0 4
3 4 5

 ∈ G1 , B =

1 0 0
0 2 0
0 0 3

 ∈ G1 : AB =

1 4 9
2 0 12
3 8 15

 /∈ G1
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Note:
You can also show that if G1 was a group, for any A,B ∈ G1, (AB)⊤ = AB would have
to be true, but is not. This is equivalent to saying BA = AB would have to be true:

(AB)⊤ = B⊤A⊤ = BA

However, to show that there exist A and B in G1 for which AB ̸= BA (which is an im-
portant step in the proof!), the easiest way again is to choose a concrete counter-example.

(b) G2 := {A ∈ Rn×n| det(A) = −1}
The set contains no neutral element, thus no group:

det(Idn) = 1 ̸= −1 ⇒ Idn /∈ G2

(c) G3 := {A ∈ Rn×n| det(A) > 0}
The set forms a group. The easiest way to show this is to show that G3 is a subgroup of
the general linear group GL(n). We simply need to show that for any two elements A,B
of G3, AB−1 is also in G3: 1 for A,B ∈ G3,

det(AB−1) = det(A)︸ ︷︷ ︸
>0

[det(B)]−1︸ ︷︷ ︸
>0

> 0 ⇒ AB−1 ∈ G3

Thus, G3 is a subgroup of GL(n) and hence a group.

3. Prove or disprove: There exist vectors v1, ...,v5 ∈ R3 \ {0}, which are pairwise orthogonal,
i.e.

∀i, j = 1, ..., 5 : i ̸= j =⇒ ⟨vi,vj⟩ = 0

Assume there exist five pairwise orthogonal, non-zero vectors v1, ...,v5 ∈ R3. In R3, there
are at most three linearly independent vectors. Thus, the vectors are linearly dependent, which
means

∃ ai :

5∑
i=1

aivi = 0 ,

with at least one ai ̸= 0. Without loss of generality, assume that a1 = −1, resulting in

v1 = a2v2 + a3v3 + a4v4 + a5v5

As the vectors are assumed to be pairwise orthogonal, we can derive

||v1||2 = ⟨v1,v1⟩ =
= ⟨v1, a2v2 + a3v3 + a4v4 + a5v5⟩ =
= a2⟨v1,v2⟩+ a3⟨v1,v3⟩+ a4⟨v1,v4⟩+ a5⟨v1,v5⟩ =
= 0 + 0 + 0 + 0 = 0

⇒ v1 = 0 ,

which contradicts the assumption of pairwise orthogonal, non-zero vectors.

4. Groups and inclusions:
Groups

1See e.g. https://en.wikipedia.org/wiki/Subgroup test for a proof if this is not clear to you.
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(a) SO(n): special orthogonal group

(b) O(n): orthogonal group

(c) GL(n): general linear group

(d) SL(n): special linear group

(e) SE(n): special euclidean group (In particular, SE(3) represents the rigid-body motions
in R3)

(f) E(n): euclidean group

(g) A(n): affine group

Inclusions

(a) SO(n) ⊂ O(n) ⊂ GL(n)

(b) SE(n) ⊂ E(n) ⊂ A(n) ⊂ GL(n+ 1)

5. λa = (λava)⊤vb
⟨va,vb⟩ = v⊤a A⊤vb

⟨va,vb⟩ = v⊤a Avb
⟨va,vb⟩ =

v⊤a (λbvb)
⟨va,vb⟩ = λb

6. Let V be the orthonormal matrix (i.e. V ⊤ = V −1) given by the eigenvectors, and Σ the diagonal
matrix containing the eigenvalues:

V =

 | |
v1 · · · vn
| |

 and Σ =


λ1 0

. . .

0
. . . 0

. . . 0 λn

 .

As V is a basis, we can express x as a linear combination of the eigenvectors x = V α, for some
α ∈ Rn. For ||x|| = 1 we have

∑
i α

2
i = α⊤α = x⊤V V ⊤x = x⊤x = 1. This gives

x⊤Ax = x⊤V ΣV −1x

= α⊤V ⊤V ΣV ⊤V α

= α⊤Σα =
∑
i

α2
iλi

Considering
∑

i α
2
i = 1, we can conclude that this expression is minimized iff only the αi

corresponding to the smallest eigenvalue(s) are non-zero. If λn−1 ⪈ λn, there exist only two
solutions (αn = ±1), otherwise infinitely many.

For maximisation, only the the αi corresponding to the largest eigenvalue(s) can be non-zero.

7. We show that: x ∈ kernel(A) ⇔ x ∈ kernel(A⊤A).

”⇒”: Let x ∈ kernel(A)
A⊤ Ax︸︷︷︸

=0

= A⊤0 = 0 ⇒ x ∈ kernel(A⊤A)

”⇐”: Let x ∈ kernel(A⊤A)
0 = x⊤A⊤Ax︸ ︷︷ ︸

=0

= ⟨Ax,Ax⟩ = ||Ax||2 ⇒ Ax = 0 ⇒ x ∈ kernel(A)
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8. Singular Value Decomposition (SVD)
Note: There exist multiple slightly different definitions of the SVD. Depending on the conven-
tion used, we might have S ∈ Rm×n, S ∈ Rn×n, or S ∈ Rp×p where p = rank(A). In the
lecture the third option was presented, for which S is invertible (no zeros on the diagonal). In
the following, we present the results for the first option, since that is the one that Matlab’s svd
function returns by default.

(a) A ∈ Rm×n, U ∈ Rm×m, S ∈ Rm×n, V ∈ Rn×n

(b) Similarities and differences between SVD and EVD:

i. Both are matrix diagonalization techniques.
ii. The SVD can be applied to matrices A ∈ Rm×n with m ̸= n, whereas the EVD is

only applicable to quadratic matrices (A ∈ Rm×n with m = n).

(c) Relationship between U, S, V and the eigenvalues and eigenvectors of A⊤A and AA⊤:

i. A⊤A: The columns of V are eigenvectors; the squares of the diagonal elements of S
are eigenvalues.

ii. AA⊤: The columns of U are eigenvectors; the squares of the diagonal elements of S
are eigenvalues (possibly filled up with zeros).

(d) Entries in S:

i. S is a diagonal matrix. The elements along the diagonal are the singular values of A.
ii. The number of non-zero singular values gives us the rank of the matrix A.
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