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Math Background

1. Show for each of the following sets (1) whether they are linearly independent, (2) whether they
span R3 and (3) whether they form a basis of R3:

1 0 0
(a) B1 = 1l,{1].,10
1 1 1

The set By (1) is linearly independent, (2) spans R3, (3) forms a basis of R>.
This can be shown by building a matrix and calculating the determinant:

100
det| 11 0 |=1+#0.
111

As the determinant is not zero, we know that the vectors are linearly independent. Three
linearly independent vectors in R? span R3. A set is a basis of R? if it is linearly indepen-
dent and spans R?, so B; forms a basis.
2 1
(b) By = 11,11
0 0
The set By (1) is linearly independent, (2) does not span R3, (3) does not form a basis of
R3.
Since the two vectors are not parallel, linear independence is given. To span R?, there are
at least three vectors needed. Hence, the set cannot be a basis either.
2 3 0 1
(c) By = 1]1,11),{0],10
0 0 1 1
The set B3 (1) is not linearly independent, (2) spans R3, (3) does not form a basis of IR?.
In R3, there cannot be more than three independent vectors. Using e.g. the determinant,
one finds that any three of the four vectors form a basis of R? and thus the four together
span IR3. Since they are not linearly independent, they cannot form a basis.

2. Which of the following sets forms a group (with matrix-multiplication)? Prove or disprove!

(a) G1:={A e R™"|det(A) #0A AT = 4}
The set is not closed under multiplication, thus no group. To show this, one counter-
example is enough: choose n = 3 and

1 2 3 1 0 0 1 4 9
A=12 0 4 EGl, B=10 2 0 €G1: AB=12 0 12 ¢G1
3 4 5 0 0 3 3 8 15


https://live.rbg.tum.de/course/2023/S/CVIMVG

Note:
You can also show that if G; was a group, for any A, B € Gy, (AB)" = AB would have
to be true, but is not. This is equivalent to saying BA = AB would have to be true:

(AB)' =B"AT = BA

However, to show that there exist A and B in G for which AB # BA (which is an im-
portant step in the proof!), the easiest way again is to choose a concrete counter-example.

(b) Go :={A € R""|det(A) = —1}
The set contains no neutral element, thus no group:

det(ld,) =1# -1 = 1Id, ¢ Gs

() G :={A € R"™"|det(A) > 0}
The set forms a group. The easiest way to show this is to show that G5 is a subgroup of
the general linear group G'L(n). We simply need to show that for any two elements A, B
of G3, AB~" is also in G3:[[| for A, B € G,

det(AB™!) = det(A) [det(B)] ' >0 = AB e Gy
0 >0
>

Thus, G3 is a subgroup of GL(n) and hence a group.
3. Prove or disprove: There exist vectors v1, ..., vs € R?\ {0}, which are pairwise orthogonal,

i.e.

Assume there exist five pairwise orthogonal, non-zero vectors vy, ..., vs € R3. In R3, there
are at most three linearly independent vectors. Thus, the vectors are linearly dependent, which

means 5
Jda;: Zaivizo,
i=1
with at least one a; # 0. Without loss of generality, assume that a; = —1, resulting in

V1 = a2V2 +a3v3 +a4vy + asvs
As the vectors are assumed to be pairwise orthogonal, we can derive

IVil* = (v1,v1) =
= (V1,a2vy + agvs + agvy + azvs) =
= ag(v1,va) + a3(vi, vs) + ag(vi,va) + as(vy, vs) =
=04+04+0+0=0
= v1 =0,

which contradicts the assumption of pairwise orthogonal, non-zero vectors.

4. Groups and inclusions:
Groups

Seee.g. https://en.wikipedia.org/wiki/Subgroup_test for a proof if this is not clear to you.



(a) SO(n): special orthogonal group

(b) O(n): orthogonal group

(¢c) GL(n): general linear group

(d) SL(n): special linear group

(e) SE(n): special euclidean group (In particular, SFE(3) represents the rigid-body motions
in R?)

(f) E(n): euclidean group

(2) A(n): affine group

Inclusions

(a) SO(n) C O(n) C GL(n)
(b) SE(n) C E(n) C A(n) C GL(n+1)

A = Qava)Ton _ vg ATop _ wg Avy _ vg Qwws) _ )
@ (va,vp) (va,vp) (va,vp) (va,vp) b

. Let V be the orthonormal matrix (i.e. V' = V~1) given by the eigenvectors, and 3 the diagonal
matrix containing the eigenvalues:

‘ | A O
V: Ul fUn and Z: 0

0 A,

As V is a basis, we can express z as a linear combination of the eigenvectors x = V «, for some
o € R™ For ||z|]| = 1wehave 3, a? =a'a=2"VV Tz = 2"z = 1. This gives

' Ar =2 VXV 1z
=o' VVEV Va
=o' Sa= Z a2\

Considering >, ozl2 = 1, we can conclude that this expression is minimized iff only the «;
corresponding to the smallest eigenvalue(s) are non-zero. If A\,_1 > A, there exist only two
solutions (o, = +1), otherwise infinitely many.

For maximisation, only the the «; corresponding to the largest eigenvalue(s) can be non-zero.

. We show that: 2 € kernel(A) < x € kernel(AT A).

”=": Let x € kernel(A)
AT Az =AT0=0 =z ckemel(ATA)
=0
"<=": Let z € kernel(AT A)
0=x" AT Az = (Az, Az) = ||Az||? = Az =0 = z € kernel(A)
=0



8. Singular Value Decomposition (SVD)
Note: There exist multiple slightly different definitions of the SVD. Depending on the conven-
tion used, we might have S € R™*" S € R™*" or S € RP*P where p = rank(A). In the
lecture the third option was presented, for which .S is invertible (no zeros on the diagonal). In
the following, we present the results for the first option, since that is the one that Matlab’s svd
function returns by default.

(a) Ae R™*" U e RMm*xm G c RMXn |/ ¢ RM*n
(b) Similarities and differences between SVD and EVD:

i. Both are matrix diagonalization techniques.
ii. The SVD can be applied to matrices A € R™*" with m # n, whereas the EVD is
only applicable to quadratic matrices (A € R™*" with m = n).
(c) Relationship between U, S,V and the eigenvalues and eigenvectors of AT A and AA™:
i. AT A: The columns of V are eigenvectors; the squares of the diagonal elements of S
are eigenvalues.
ii. AA": The columns of U are eigenvectors; the squares of the diagonal elements of S
are eigenvalues (possibly filled up with zeros).
(d) Entriesin S:

i. S is a diagonal matrix. The elements along the diagonal are the singular values of A.
ii. The number of non-zero singular values gives us the rank of the matrix A.



