

Multiple View Geometry: Solution 5

Dr. Haoang Li, Daniil Sinitsyn, Sergei Solonets, Viktoria Ehm
Computer Vision Group, TU Munich
Wednesdays 16:00-18:15 at Hörsaal 2, "Interims I" (5620.01.102), and on RBG Live

Exercise: June 14, 2023

1. (a) E is essential matrix $\Rightarrow \Sigma=\operatorname{diag}\{\sigma, \sigma, 0\}$:

$$
\begin{aligned}
& R_{z}\left(\pm \frac{\pi}{2}\right) \Sigma=\left(\begin{array}{ccc}
0 & \mp 1 & 0 \\
\pm 1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
\sigma & 0 & 0 \\
0 & \sigma & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & \mp \sigma & 0 \\
\pm \sigma & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=-\left(R_{z}\left(\pm \frac{\pi}{2}\right) \Sigma\right)^{\top} \\
&-\hat{T}^{\top} \\
&=-\left(U R_{z} \Sigma U^{\top}\right)^{\top} \\
&=U\left(-R_{z} \Sigma\right)^{\top} U^{\top} \\
&=U R_{z} \Sigma U^{\top} \\
&=\hat{T}
\end{aligned}
$$

(b) Since U, V are orthogonal with determinant 1 , they are rotation matrices. Since $\mathrm{SO}(3)$ is a group and thus closed under multiplication, $R \in \mathrm{SO}(3)$.
Alternative longer proof:
i. U, V are orthogonal matrices $\Rightarrow U^{\top} U=\mathbb{1}$ and $V V^{\top}=\mathbb{1}$
R_{z} is a rotation matrix $\Rightarrow R_{z} R_{z}^{\top}=\mathbb{1}$

$$
\begin{aligned}
R^{\top} R & =\left(U R_{z}^{\top} V^{\top}\right)^{\top}\left(U R_{z}^{\top} V^{\top}\right) \\
& =V R_{z} U^{\top} U R_{z}^{\top} V^{\top} \\
& =V R_{z} R_{z}^{\top} V^{\top} \\
& =V V^{\top} \\
& =\mathbb{1}
\end{aligned}
$$

ii. U and V are special orthogonal matrices with $\operatorname{det}(U)=\operatorname{det}\left(V^{\top}\right)=1$.

$$
\operatorname{det}(R)=\operatorname{det}\left(U R_{z}^{\top} V^{\top}\right)=\underbrace{\operatorname{det}(U)}_{1} \cdot \underbrace{\operatorname{det}\left(R_{z}^{\top}\right)}_{1} \cdot \underbrace{\operatorname{det}\left(V^{\top}\right)}_{1}=1
$$

2. (a) $H=R+T u^{\top} \Leftrightarrow R=H-T u^{\top}$.

$$
\begin{aligned}
E & =\hat{T} R \\
& =\hat{T}\left(H-T u^{\top}\right) \\
& =\hat{T} H-\underbrace{\hat{T} T}_{=T \times T=0} u^{\top} \\
& =\hat{T} H
\end{aligned}
$$

(b)

$$
\begin{aligned}
H^{\top} E+E^{\top} H & =H^{\top}(\hat{T} H)+(\hat{T} H)^{\top} H \\
& =H^{\top}(\hat{T} H)+H^{\top} \hat{T}^{\top} H \\
& \left.=H^{\top} \hat{T} H-H^{\top} \hat{T} H \quad \text { (because } \hat{T} \text { is skew-symmetric, i.e. } \hat{T}^{\top}=-\hat{T}\right) \\
& =0
\end{aligned}
$$

3. In this exercise we assume pixel coordinates.

Rotation R and translation T are defined such that

$$
g_{21}=\left[\begin{array}{cc}
R & T \\
0 & 1
\end{array}\right]
$$

transforms a point from coordinate system 1 (CS1) to coordinate system 2 (CS2). This means that the inverse transformation (converting points from CS2 to CS1) is given by

$$
g_{12}=g_{21}^{-1}=\left[\begin{array}{cc}
R^{\top} & -R^{\top} T \\
0 & 1
\end{array}\right]
$$

o_{1} seen in CS1:
$\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]^{\top}$ (homogeneous coordinates)
o_{1} seen in CS2:

$$
g_{21}\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right]^{\top}=\left[\begin{array}{c}
T \\
1
\end{array}\right]
$$

e_{2} are the pixel coordinates of o_{1} projected into image 2 :

$$
\lambda_{2} e_{2}=K_{2} \Pi_{0}\left[\begin{array}{l}
T \\
1
\end{array}\right]=K_{2} T
$$

o_{2} seen in CS2:
$\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]^{\top}$
o_{2} seen in CS1: $\quad g_{12}\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]^{\top}=\left[\begin{array}{c}-R^{\top} T \\ 1\end{array}\right]$
e_{1} are the pixel coordinates of o_{2} projected into image 1 :

$$
\begin{aligned}
\lambda_{1} e_{1} & =K_{1} \Pi_{0}\left[\begin{array}{c}
-R^{\top} T \\
1
\end{array}\right]=-K_{1} R^{\top} T \\
F e_{1} & =(\underbrace{K_{2}^{-\top} \hat{T} R K_{1}^{-1}}_{F})(\underbrace{-\frac{1}{\lambda_{1}} K_{1} R^{\top} T}_{e_{1}}) \\
& =-\frac{1}{\lambda_{1}} K_{2}^{-\top} \hat{T} R \underbrace{K_{1}^{-1} K_{1}}_{\mathbb{1}} R^{\top} T \\
& =-\frac{1}{\lambda_{1}} K_{2}^{-\top} \hat{T} \underbrace{R R^{\top} T}_{\mathbb{1}} \\
& =-\frac{1}{\lambda_{1}} K_{2}^{-\top} \underbrace{\hat{T} T}_{=T \times T=0} \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
e_{2}^{\top} F & =(\underbrace{\frac{1}{\lambda_{2}} K_{2} T}_{e_{2}})^{\top}(\underbrace{K_{2}^{-\top} \hat{T} R K_{1}^{-1}}_{F}) \\
& =\frac{1}{\lambda_{2}} T^{\top} \underbrace{K_{2}^{\top} K_{2}^{-\top} \hat{T} R K_{1}^{-1}}_{\mathbb{1}} \\
& =\frac{1}{\lambda_{2}} T^{\top} \hat{T} R K_{1}^{-1} \\
& =\frac{1}{\lambda_{2}}\left(\hat{T}^{\top} T\right)^{\top} R K_{1}^{-1} \\
& =\frac{1}{\lambda_{2}}(-\hat{T} T)^{\top} R K_{1}^{-1} \\
& =-\frac{1}{\lambda_{2}}(T \times T)^{\top} R K_{1}^{-1} \\
& =-\frac{1}{\lambda_{2}} 0 R K_{1}^{-1} \\
& =0
\end{aligned}
$$

