

IN2106 Practical Course: Shape Reconstruction and Matching in Computer Vision

Preparation Meeting, 08.02.2023 start at 14:00. 00.08.059

Mohammed Brahimi, Simon Weber, Maolin Gao

Structure

Lecture Part: lectures in the initial weeks with programming assignments

Project Part: working on a research project in group Regular meetings with supervisors

Outcome: give a talk and write a scientific report

Followed by Q&A (no further exams)

Lectures

- Masters practical course (prerequisites see later)
- 3-4 video lectures with face-to-face Q&A Wednesdays, 14:00-15:30 (starting from 19.04.2023 on)
- Programming assignments
- Topics: shape operators, distances, shape matching, reconstruction, manifolds
- Data modalities: images, point clouds, set, graphs etc.

Goal: You will know the necessary theories and background knowledges to start your projects.

Projects

- Research oriented projects
- Dynamic research goals
- Projects assignments to be done after the lecture part
- Working on a research project in group of max. 2 persons
- Regular 1-on-1 meeting with supervisors for updates and resolving issues [offline/online]
- Computation resources via ssh
- Weekly written summary of the progress before your 1-on-1 meeting

- Projects specifics will be decided later
- However, you can submit project proposals before the new semester and it may be considered (sample projects see later)

Evaluation Criteria

A weighted combination of:

- Homework assignments
- Project code and results
- Weekly and final reports
- Presentation and Q&A

Prerequisites

- Proficiency in python (or matlab)
- Familiar with version control (git)
- Comfortable with DL frameworks (pytorch, pyg etc.)
- Good knowledge of basic mathematics, linear algebra, probability, numerics, analysis etc.
- Participation in at least one of the offered deep learning lectures/labs, eg. <u>I2DL,ADL4CV,IN2349</u> ...
- Or participation in at least one of the Multi-View Geometry lectures/labs, eg. <u>MVG,VISNAV</u>, <u>IN2293</u>...

• We may consider other courses offered outside of TUM if the content matches. Please highlight them in your application.

Application

• Assignment to the course via the matching system: <u>https://matching.in.tum.de</u>.

(select your preference of the lab course on the system.)

 Application documents to be sent separately to us: Send your CV and Transcripts by 22.02.2023 to <u>srmcv-ss23@vision.in.tum.de</u>

Please see the email format on the next slide

• We only consider the candidates who applied to the matching system AND sent their application documents

Application Email Format

In order to easily evaluate your profile for matching, we ask you to follow the format below:

Subject: Application [Your Matriculation Number] In the body please give at least the following details:

- Matriculation #:
- Name:
- Name of Degree:
- Masters Semester #:
- Average Grade:
 - Bachelor:
 - Master (For the previous semester, if available)
- List of Relevant courses taken with grade

Please remember to also attach your CV and transcripts(Bachelor + Master).

Feel free to share any additional documents, information (eg. link to git, past research projects) that could support your application.

Optional: If you also have a project proposal fit into the lab course, please briefly describe.

Eisenberger et al. Smooth Shells, <u>https://arxiv.org/abs/1905.12512</u> NeuroMorph <u>https://arxiv.org/abs/2106.09431</u>

8th Feb, 2023

Ovsjanikov et al. Functional Maps: <u>https://people.csail.mit.edu/jsolomon/assets/fmaps.pdf</u>

8th Feb, 2023

 Halimi et al. Unsupervised Learning of Dense Shape Correspondence: https://arxiv.org/abs/1812.02415

 8th Feb, 2023
 Practical Course: Shape Reconstruction and Matching in Computer Vision

Rodolà et al. Partial Functional Maps: <u>https://vision.in.tum.de/_media/spezial/bib/rodola-partial.pdf</u> Attaiki et al. Deep Partial Functional Maps: <u>https://arxiv.org/abs/2110.09994</u>

8th Feb, 2023

Correspondences in shape collection

Gao et al. Isometric Multi-Shape Matching: <u>https://arxiv.org/abs/2012.02689</u> Eisenberger et al. G-MSM: <u>https://arxiv.org/abs/2212.02910</u>

8th Feb, 2023

• Point clouds registration

Huang et al. Synorim: <u>https://arxiv.org/abs/2111.12878</u>

8th Feb, 2023

Geodesic distances computation

Crane et al. Geodesics in Heat: https://arxiv.org/abs/1204.6216

8th Feb, 2023

- Asymmetric Geodesic distances computation
- Extension to Finsler manifolds

Yang F. et al., Geodesic via Asymmetric Heat Diffusion Based on Finsler Metric <u>https://www.ceremade.dauphine.fr/~cohen/mypapers/FangYangACCV18-0788</u>

8th Feb, 2023

- Shape reconstruction by deforming the unit sphere to the desired shape
- Uses only a set of color images from various viewpoints as input

Cheng et al., "Diffeomorphic Neural Surface Parameterization for 3D and reflectance acquisition", https://dl.acm.org/doi/10.1145/3528233.3530741

8th Feb, 2023

• Single View 3D reconstruction using a Neural depth map

Guo et al., "Edge-preserving Near-light Photometric Stereo with Neural Surfaces", https://arxiv.org/abs/2207.04622

Any Questions?

Website: https://vision.in.tum.de/teaching/ss2023/srmcv

Email: srmcv-ss23@vision.in.tum.de

Appendix

8th Feb, 2023

Presentation, Q&A

•

•

•

•

•

Recommended structure

- 1. Introduction of the problem
- 2. Approach
- 3. Results (if any)
- 4. Summary

8th Feb, 2023

30 minutes talk + Q&A (~15 min)

- number your slides
- use visualizations instead of full text
- reference the original author and conference/journal name
 - use your template of choice

Technical Report

- Overview and main contributions of the assigned topic
- The report **is due 1 week after the oral exam**
- Address the open questions left from the Q&A session
- 6-10 pages
- Use CVPR Latex template: <u>http://cvpr2021.thecvf.com/sites/default/files/2020-09/cvpr2021AuthorKit_2.zip</u>
- Use your text editor of choice if you must but keep the style similar to the template

- 1

8th Feb, 2023