
Practical Course: Vision Based Navigation

Lecture 2: Camera Models and
Optimization

Jason Chui, Simon Klenk

Version 08.05.2023

Camera Models

2

Image Formation

3

• Lambertian reflectance: object reflects light with a constant
brightness at any angle

How to Capture an Image?

Prof. Dr. Jörg Stückler, Computer Vision Group, TUMRobotic 3D Vision 3

light source

object

Image Formation

4

How to Capture an Image?

Prof. Dr. Jörg Stückler, Computer Vision Group, TUMRobotic 3D Vision 4

• What if we place an image sensor in front of the object?
• A pixel receives a mixture of light from visible object points
• Strong blur! We don͛t get a useful image

light source

object

image sensor

Image Formation

5

How to Capture an Image?

Prof. Dr. Jörg Stückler, Computer Vision Group, TUMRobotic 3D Vision 5

• Let s͛ place a barrier with an aperture between object and sensor
• Sensor receives light from a small set of rays
• Blur is reduced

light source

object

image sensorbarrier

Camera Obscura

6

First published picture of camera obscura in Gemma Frisius' 1545 book De Radio Astronomica et Geometrica

Pinhole Camera Model

7

π(x, i) =
fx

x
z

fy
y
z

+ [cx
cy]

i = [fx, fy, cx, cy]
T

• Camera coordinate frame attached to the
center of (0,0) pixel.
• X - horizontal axis
• Y - vertical axis downwards
• Z - forward

Projection:

Intrinsic parameters:

π−1(u, i) =
1

m2
x + m2

y + 1

mx
my

1

mx =
u − cx

fx
,

my =
v − cy

fy
.

Unprojection:

1. Camera intrinsic and extrinsic

§ Images
§ 2D arrays stored in computer
§ Usually 0-255 (1 byte) grayscale values after quantification

19

Origin X-axis, width

Y-axis,
height

Image

Pixel coordinates (x,y)

In each pixel

Grayscale image: 0-255 (1 byte)
Depth images: 0-65535 (2 bytes)
Color images: multiple channels

BGR, RGB, RGBA, etc
1 byte for each channel

24 bits

x'

y'
(x’, y’)

Top View

Optical Lens: Distortion and Aperture

8

Original image Barrel distortion Pincushion distortion

Blue: perfect focus, Green: less focused
Red: out of focus
[source: unrealengine 5.0 docs]

Large FOV and Navigation

9

Benefit of Large Field-of-View Cameras for Visual Odometry

Zichao Zhang, Henri Rebecq, Christian Forster, Davide Scaramuzza

Abstract— The transition of visual-odometry technology from

research demonstrators to commercial applications naturally

raises the question: “what is the optimal camera for vision-
based motion estimation?” This question is crucial as the choice

of camera has a tremendous impact on the robustness and

accuracy of the employed visual odometry algorithm. While

many properties of a camera (e.g. resolution, frame-rate, global-

shutter/rolling-shutter) could be considered, in this work we

focus on evaluating the impact of the camera field-of-view

(FoV) and optics (i.e., fisheye or catadioptric) on the quality of

the motion estimate. Since the motion-estimation performance

depends highly on the geometry of the scene and the motion of

the camera, we analyze two common operational environments

in mobile robotics: an urban environment and an indoor scene.

To confirm the theoretical observations, we implement a state-

of-the-art VO pipeline that works with large FoV fisheye and

catadioptric cameras. We evaluate the proposed VO pipeline in

both synthetic and real experiments. The experiments point out

that it is advantageous to use a large FoV camera (e.g., fisheye

or catadioptric) for indoor scenes and a smaller FoV for urban

canyon environments.

SUPPLEMENTARY MATERIAL

A video showing our omnidirectional visual odometry
pipeline performing on real and synthetic data is available at
the website: http://rpg.ifi.uzh.ch/fov.html.

I. INTRODUCTION

Estimating the six degrees-of-freedom motion of a cam-
era simply from its stream of images has been an active
field of research for several decades [1], [2], [3]. Today,
state-of-the-art algorithms run in real-time on smartphone
processors and achieve the accuracy and robustness that is
required to enable various interesting applications. However,
the remaining challenge to enable commercial applications
in risky fields such as drone delivery or autonomous driving
is robustness, especially during fast motions, illumination
changes, and in environments with difficult texture. All three
nuisances increase the difficulty to track visual cues, which
is fundamental to enable vision-based motion estimation.

Our work is motivated by the question of whether the
robustness of existing visual odometry (VO) algorithms can
be significantly improved by selecting the best camera for
the task at hand. In order to minimize the design space, we
limit ourselves to the selection of the optimal optics. We are
particularly interested in the performance of omnidirectional
cameras, which are fisheye and catadoptric cameras charac-
terized by a large field of view (FoV). In theory, a larger
FoV allows tracking visual landmarks over longer periods,

The authors are with the Robotics and Perception Group, University
of Zurich, Switzerland http://rpg.ifi.uzh.ch. This research was
funded by the China Scholarship Council.

Urban Canyon Indoor

Pe
rs

pe
ct

iv
e

Fi
sh

ey
e

C
at

ad
io

pt
ric

Fig. 1: Images from our synthetic datasets, showing different FoV cameras.

which should increase the precision of pose estimation as
more measurements are available and, at the same time,
increase robustness since the visual overlap between sub-
sequent images is larger. However, increasing the FoV while
fixing the resolution means that the angular resolution of a
pixel is reduced, hence, lowering the measurement accuracy
of a single camera pixel.

The contribution of this work is threefold: after discussion
of related work in Section I-A, we present in Section II
simulation experiments that show the impact of the FoV
of a camera on the accuracy and robustness of a canonical
VO pipeline. The analysis encompasses standard steps of
a visual-odometry pipeline. After studying the theoretical
advantages of large FoV cameras and to facilitate an analysis
on real images, we describe in Section III challenges and
solutions to enable a state-of-the-art VO pipeline (in our
case SVO [4]) to operate with such images. Therefore, we
provide a detailed study of six error metrics on the pose
estimation accuracy. Our analysis helps to select the proper
error metrics as a function of the camera FoV. Finally, in
Section IV, we evaluate the performance of the proposed
omnidirectional SVO algorithm in synthetic as well as real
experiments for various camera optics. Since the impact of
the camera FoV is a function of the application scenario,
we perform the experiments in different environments that

Benefit of Large Field-of-View Cameras for Visual Odometry

Zichao Zhang, Henri Rebecq, Christian Forster, Davide Scaramuzza

Abstract— The transition of visual-odometry technology from

research demonstrators to commercial applications naturally

raises the question: “what is the optimal camera for vision-
based motion estimation?” This question is crucial as the choice

of camera has a tremendous impact on the robustness and

accuracy of the employed visual odometry algorithm. While

many properties of a camera (e.g. resolution, frame-rate, global-

shutter/rolling-shutter) could be considered, in this work we

focus on evaluating the impact of the camera field-of-view

(FoV) and optics (i.e., fisheye or catadioptric) on the quality of

the motion estimate. Since the motion-estimation performance

depends highly on the geometry of the scene and the motion of

the camera, we analyze two common operational environments

in mobile robotics: an urban environment and an indoor scene.

To confirm the theoretical observations, we implement a state-

of-the-art VO pipeline that works with large FoV fisheye and

catadioptric cameras. We evaluate the proposed VO pipeline in

both synthetic and real experiments. The experiments point out

that it is advantageous to use a large FoV camera (e.g., fisheye

or catadioptric) for indoor scenes and a smaller FoV for urban

canyon environments.

SUPPLEMENTARY MATERIAL

A video showing our omnidirectional visual odometry
pipeline performing on real and synthetic data is available at
the website: http://rpg.ifi.uzh.ch/fov.html.

I. INTRODUCTION

Estimating the six degrees-of-freedom motion of a cam-
era simply from its stream of images has been an active
field of research for several decades [1], [2], [3]. Today,
state-of-the-art algorithms run in real-time on smartphone
processors and achieve the accuracy and robustness that is
required to enable various interesting applications. However,
the remaining challenge to enable commercial applications
in risky fields such as drone delivery or autonomous driving
is robustness, especially during fast motions, illumination
changes, and in environments with difficult texture. All three
nuisances increase the difficulty to track visual cues, which
is fundamental to enable vision-based motion estimation.

Our work is motivated by the question of whether the
robustness of existing visual odometry (VO) algorithms can
be significantly improved by selecting the best camera for
the task at hand. In order to minimize the design space, we
limit ourselves to the selection of the optimal optics. We are
particularly interested in the performance of omnidirectional
cameras, which are fisheye and catadoptric cameras charac-
terized by a large field of view (FoV). In theory, a larger
FoV allows tracking visual landmarks over longer periods,

The authors are with the Robotics and Perception Group, University
of Zurich, Switzerland http://rpg.ifi.uzh.ch. This research was
funded by the China Scholarship Council.

Urban Canyon Indoor

Pe
rs

pe
ct

iv
e

Fi
sh

ey
e

C
at

ad
io

pt
ric

Fig. 1: Images from our synthetic datasets, showing different FoV cameras.

which should increase the precision of pose estimation as
more measurements are available and, at the same time,
increase robustness since the visual overlap between sub-
sequent images is larger. However, increasing the FoV while
fixing the resolution means that the angular resolution of a
pixel is reduced, hence, lowering the measurement accuracy
of a single camera pixel.

The contribution of this work is threefold: after discussion
of related work in Section I-A, we present in Section II
simulation experiments that show the impact of the FoV
of a camera on the accuracy and robustness of a canonical
VO pipeline. The analysis encompasses standard steps of
a visual-odometry pipeline. After studying the theoretical
advantages of large FoV cameras and to facilitate an analysis
on real images, we describe in Section III challenges and
solutions to enable a state-of-the-art VO pipeline (in our
case SVO [4]) to operate with such images. Therefore, we
provide a detailed study of six error metrics on the pose
estimation accuracy. Our analysis helps to select the proper
error metrics as a function of the camera FoV. Finally, in
Section IV, we evaluate the performance of the proposed
omnidirectional SVO algorithm in synthetic as well as real
experiments for various camera optics. Since the impact of
the camera FoV is a function of the application scenario,
we perform the experiments in different environments that

Z. Zhang, H. Rebecq, C. Forster, D. Scaramuzza “Benefit of Large Field-of-View
Cameras for Visual Odometry”
IEEE International Conference on Robotics and Automation (ICRA), Stockholm, 2016.

Distortion

10

Original Image

• More complex model
• Working with “raw” image
• No issues with large FOV
• Possible to optimize intrinsics

online

Pinhole-Undistorted

• Pinhole
• Fast projection and unprojection
• Not suitable for > 180°
• Bad numeric properties > 120°

https://www.degreesymbol.net/
https://www.degreesymbol.net/

(Extended) Unified Camera Model

11

2

a
1�a

b

Fig. 2: Schematic representation of the Unified Camera Model
(UCM) and Extended Unified Camera Model (EUCM). First a
3D point is projected onto a unit sphere and then projected onto
the image plane of the pinhole camera shifted by a

1�a from the
center of the sphere. In the EUCM, the sphere is transformed to
an ellipsoid using the coefficient b .

Generally, we represent pixel coordinates as u = [u,v]T 2 Q ⇢
R2, where Q denotes the image domain to which points can be
projected to. 3D point coordinates are denoted x = [x,y,z]T 2 W ⇢
R3, where W denotes the set of 3D points that result in valid
projections.

For all camera models we assume all projections cross a single
point (i.e., central projection) that defines the position of the
camera coordinate frame. The orientation of the camera frame is
defined as follows. The z axis is aligned with the principal axis of
the camera, and two other orthogonal directions (x,y) align with
the corresponding axes of the image plane. We define a coordinate
frame rigidly attached to the calibration pattern such that the
transformation Tcan

2 SE(3), which is a matrix of the special
Euclidean group, transforms a 3D coordinate from the calibration
pattern coordinate system to the camera coordinate system for
image n.

Generally, a camera projection function is a mapping p : W !
Q. Its inverse p�1 : Q ! S2 unprojects image coordinates to the
bearing vector of unit length, which defines a ray by which all
points are projected to these image coordinates.

For all camera models discussed in this section, we provide
definitions of p , p�1, the vector of intrinsic parameters i, W and
Q.

2.1 Pinhole Camera Model

The pinhole camera model has four parameters i = [fx, fy,cx,cy]
T

with a projection function that is defined as follows:

p(x, i) =

fx
x

z

fy
y

z

�
+

cx

cy

�
, (1)

It is easy to see that projection is defined for W = {x 2R3 | z >
0}, which theoretically limits the field-of-view to less than 180�.
However, in practice, even when distortion model is added the
pinhole camera demonstrates suboptimal performance for a field-
of-view greater than 120�.

We can use the following function to unproject a point:

p�1(u, i) =
1q

m2
x
+m2

y
+1

2

4
mx

my

1

3

5 (2)

mx =
u� cx

fx

, (3)

my =
v� cy

fy

, (4)

where unprojection is defined for Q = R2.

2.2 Unified Camera Model
The unified camera model (UCM) has five parameters i =
[gx,gy,cx,cy,x]T and is typically used with catadioptric cameras
[5]. A previous study [6] has shown that the UCM can represent
systems with parabolic, hyperbolic, elliptic and planar mirrors.
This model can also be applied to cameras with fisheye lenses
[7]. However, it does not fit most fisheye lenses perfectly; thus, an
additional distortion model is often added.

In the UCM, projection is defined as follows:

p(x, i) =

"
gx

x

x d+z

gy
y

x d+z

#
+

cx

cy

�
, (5)

d =
p

x2 + y2 + z2. (6)

In this model, a point is first projected onto the unit sphere and
then onto the image plane of the pinhole camera, which is shifted
by x from the center of the unit sphere.

For practical applications we propose to rewrite this model as
follows:

p(x, i) =

"
fx

x

ad+(1�a)z

fy
y

ad+(1�a)z

#
+

cx

cy

�
. (7)

This formulation of the model also has five parameters i =
[fx, fy,cx,cy,a]T , a 2 [0,1] and is mathematically equivalent
to the previous one (x = a

1�a ,gx =
fx

1�a ,gy =
fy

1�a). However, as
discussed in Section 6.0.0.4, it has better numerical properties.
Note that for a = 0, the model degrades to the pinhole model.

The set of 3D points that result in valid projections is defined
as follows:

W = {x 2 R3 | z >�wd}, (8)

w =

(
a

1�a , if a 0.5,
1�a

a if a > 0.5,
(9)

where (for a > 0.5) w represents the sine of the angle between the
horizontal axis on schematic plot (Figure 2) and the perpendicular
to the tangent of the circle from the focal point of the pinhole
camera.

The unprojection function is defined as follows:

p�1(u, i) =
x +

p
1+(1�x 2)r2

1+ r2

2

4
mx

my

1

3

5�

2

4
0
0
x

3

5 , (10)

mx =
u� cx

fx

(1�a), (11)

my =
v� cy

fy

(1�a), (12)

r
2 = m

2
x
+m

2
y
, (13)

x =
a

1�a
, (14)

i = [fx, fy, cx, cy, α, β]
T

Projection:

Intrinsic parameters:

π−1(u, i) =
1

m2
x + m2

y + m2
z

mx
my
mz

,

mx =
u − cx

fx
,

my =
v − cy

fy
,

r2 = m2
x + m 2

y ,

mz =
1 − βα2r2

α 1 − (2α − 1)βr2 + (1 − α)
,

Unprojection:

π(x, i) =
fx

x
αd + (1 − α)z

fy
y

αd + (1 − α)z

+ [cx
cy],

d = β(x2 + y2) + z2 .

Kannala-Brandt Camera Model

12

Projection:

Intrinsic parameters: 3

q

d(q)

Fig. 3: Schematic representation of the Kannala-Brandt Camera
model (KB). The displacement of the projection from the optical
center is proportional to d(q), which is a polynomial function of
the angle between the point and optical axis q .

where Q is defined as follows.

Q =

(
R2 if a 0.5

{u 2 R2 | r
2 (1�a)2

2a�1 } if a > 0.5
(15)

2.3 Extended Unified Camera Model
A previous study [8] extended the unified camera model (EUCM)
to have six parameters i = [fx, fy,cx,cy,a,b]T , a 2 [0,1], b > 0
and defined the following projection function.

p(x, i) =

"
fx

x

ad+(1�a)z

fy
y

ad+(1�a)z

#
+

cx

cy

�
, (16)

d =
q

b (x2 + y2)+ z2. (17)

The EUCM can be interpreted as a generalization of the UCM
where the point is projected onto an ellipsoid symmetric around
the z axis (Figure 2). That study also indicated that when treating
the model as a projection on a quadratic surface followed by
orthographic projection on the image plane the model is complete
in the sense that it can represent all possible quadratic surfaces.

With EUCM, a set W is defined similar to the UCM, with the
difference that d is computed by Eq. 17. Note that the EUCM
degrades to a regular UCM for b = 1.

As mentioned previously, the EUCM projects on the ellipsoid.
Therefore, the unit length vector for unprojection cannot be
obtained directly; consequently, we must employ normalization.
The unprojection function is defined as follows:

p�1(u, i) =
1q

m2
x
+m2

y
+m2

z

2

4
mx

my

mz

3

5 , (18)

mx =
u� cx

fx

, (19)

my =
v� cy

fy

, (20)

r
2 = m

2
x
+m

2
y
, (21)

mz =
1�ba2

r
2

a
p

1� (2a �1)b r2 +(1�a)
, (22)

where Q is defined as follows.

Q =

(
R2 if a 0.5
{u 2 R2 | r

2 1
b (2a�1)} if a > 0.5

(23)

2.4 Kannala-Brandt Camera Model
The previous study [3] proposed the Kannala-Brandt (KB) model,
which is a generic camera model that well fits regular, wide angle
and fisheye lenses. The KB model assumes that the distance
from the optical center of the image to the projected point is
proportional to the polynomial of the angle between the point and
the principal axis (Figure 3). We evaluate two versions of the KB
model, i.e.,: with six parameters i = [fx, fy,cx,cy,k1,k2]

T and eight
parameters i= [fx, fy,cx,cy,k1,k2,k3,k4]

T . The projection function
of the KB model is defined as follows:

p(x, i) =

fx d(q) x

r

fy d(q) y

r

�
+

cx

cy

�
, (24)

r =
p

x2 + y2, (25)
q = atan2(r,z), (26)

d(q) = q + k1q 3 + k2q 5 + k3q 7 + k4q 9, (27)

assuming that polynomial d(q) is monotonic W = R3 \ [0,0,0]T .
The unprojection function of the KB model requires finding

the root of a high-order polynomial to recover angle q from
d(q). This can be achieved through an iterative optimization, e.g.,
Newton’s method. The unprojection function can be expressed as
follows:

p�1(u, i) =

2

4
sin(q ⇤) mx

ru

sin(q ⇤)
my

ru

cos(q ⇤)

3

5 , (28)

mx =
u� cx

fx

, (29)

my =
v� cy

fy

, (30)

ru =
q

m2
x
+m2

y
, (31)

q ⇤ = d
�1(ru), (32)

where q ⇤ is the solution of d(q) = ru. If d(q) is monotonic Q =
R2.

The KB model is sometimes used as a distortion model for a
pinhole camera, e.g., the equidistant distortion model in Kalibr1

[9] or the fisheye camera model in OpenCV2. The model is
mathematically the same; however, since it first projects the point
using the pinhole model and then applies distortion, it has a
singularity at z = 0, which makes it unsuitable for fisheye lenses
with field-of-view close to 180�when implemented is this manner.

Several other models for large field-of-view lenses based on
high-order polynomials exist. For example, the main differences
between [4] and the KB model are as follows: the model calibrates
two separate polynomials for projection and unprojection to pro-
vide a closed-form solution for both, and for projection it uses
the angle between the image plane and the point rather than of the
angle between the optical axis and the point. We expect this model
to have similar performance and do not explicitly include it in our
evaluation.

2.5 Field-of-View Camera Model
A previously proposed Field-of-view camera model (FOV) [10],
has five parameters i = [fx, fy,cx,cy,w]

T and assumes the distance

1. https://github.com/ethz-asl/kalibr
2. https://github.com/opencv/opencv

i = [fx, fy, cx, cy, k1, k2, k3, k4]
T

π(x, i) =
fx d(θ) x

r

fy d(θ) y
r

+ [cx
cy],

r = x2 + y2,

θ = atan2(r, z),
d(θ) = θ + k1θ3 + k2θ5 + k3θ7 + k4θ9 .

Unprojection:

π−1(u, i) =

sin(θ*)
mx

ru

sin(θ*)
my

ru

cos(θ*)

,

mx =
u − cx

fx
,

my =
v − cy

fy
,

ru = m2
x + m 2

y ,

θ* = d−1(ru),

Double Sphere Camera Model

13

Projection:

Intrinsic parameters:

1

The Double Sphere Camera Model

Vladyslav Usenko, Nikolaus Demmel and Daniel Cremers

Abstract—Vision-based motion estimation and 3D reconstruction, which have numerous applications (e.g., autonomous driving,

navigation systems for airborne devices and augmented reality) are receiving significant research attention. To increase the accuracy

and robustness, several researchers have recently demonstrated the benefit of using large field-of-view cameras for such applications.

In this paper, we provide an extensive review of existing models for large field-of-view cameras. For each model we provide projection

and unprojection functions and the subspace of points that result in valid projection. Then, we propose the Double Sphere camera

model that well fits with large field-of-view lenses, is computationally inexpensive and has a closed-form inverse. We evaluate the

model using a calibration dataset with several different lenses and compare the models using the metrics that are relevant for Visual

Odometry, i.e., reprojection error, as well as computation time for projection and unprojection functions and their Jacobians. We also

provide qualitative results and discuss the performance of all models.

F

1 INTRODUCTION

Visual Odometry and Simultaneous Localization and Mapping
are becoming important for numerous applications. To increase
the accuracy and robustness of these methods, both hardware and
software must be improved.

Several issues can be addressed by the use of large field-
of-view cameras. First, with a large field-of-view, it is easier
to capture more textured regions in the environment, which is
required for stable vision-based motion estimation. Second, with
a large field-of-view, large camera motions can be mapped to
smaller pixel motions compared to cameras with a smaller field-
of-view at the same resolution. This ensures small optical flow
between consecutive frames, which is particularly beneficial for
direct methods.

Previous studies have demonstrated that a large field-of-view
is beneficial for vision-based motion estimation [1] [2]. Catadiop-
tric cameras are mechanically complex and expensive; however
fisheye lenses are small, lightweight, and widely available on the
consumer market. Thus, in this paper we focus on fisheye lenses
and models that describe their projection.

The reminder of this paper is organized as follows. In Section
2 we provide an extensive review of camera models that can be
used with fisheye lenses. To make the paper self-contained we
provide the projection and unprojection functions and define the
subspace of valid projections for each model. In Section 3, we
propose a novel projection model for fisheye cameras that has the
following advantages.

• The proposed projection model is well suited to represent
the distortions of fisheye lenses.

• The proposed model does not require computationally
expensive trigonometric operations for projection and un-
projection.

• Differing from projection models based on higher order
polynomials [3] [4], that use iterative methods to unproject
points, the inverse of the projection function exists in a
closed form.

In Section 6, we evaluate all presented models with respect
to metrics that are relevant for vision-based motion estimation.

• Authors are with Technical University of Munich. E-mail: {usenko, dem-

meln, cremers}@in.tum.de

a
1�a

x

Fig. 1: The proposed Double Sphere (DS) projection model.
Initially, the point is projected onto the first sphere (green) and
then onto the second sphere, which is shifted with respect to the
first sphere by x (red). Then, the point is projected onto the image
plane of a pinhole camera that is shifted by a

1�a from the second
sphere. The image below is the reprojection of the pattern corners
after calibration using the proposed DS model, which indicates
that the model fits the lens well.

Here, we use a dataset collected using several different lenses to
evaluate the reprojection error for each model. We also present
the computation time required for projection and unprojection
functions and the time required to compute Jacobians relative to
their arguments.

The datasets used in this study together with the open-source
implementation of the proposed model are available on the project
page:

https://vision.in.tum.de/research/vslam/
double-sphere

2 RELATED WORK

We define the notations used in this paper prior to reviewing
existing camera models that can be used with fisheye lenses. We
use lowercase letters to denote scalars, e.g., u, bold uppercase
letters to denote matrices, e.g., R, and bold lowercase letters for
vectors, e.g., x.

i = [fx, fy, cx, cy, ξ, α]
T

The Double Sphere Camera Model (V. Usenko, N. Demmel and
D. Cremers), In Proc. of the Int. Conference on 3D Vision (3DV),
2018. [arXiv:1807.08957]

π(x, i) =
fx

x
αd2 + (1 − α)(ξd1 + z)

fy
y

αd2 + (1 − α)(ξd1 + z)

+ [cx
cy],

d1 = x2 + y2 + z2,

d2 = x2 + y2 + (ξd1 + z)2 .

Unprojection:

π−1(u, i) =
mzξ + m2

z + (1 − ξ2)r2

m2
z + r2

mx
my
mz

−
0
0
ξ

,

mx =
u − cx

fx
,

my =
v − cy

fy
,

r2 = m2
x + m 2

y ,

mz =
1 − α2r2

α 1 − (2α − 1)r2 + 1 − α
.

https://arxiv.org/abs/1807.08957

Camera Models Code

14

template <typename Scalar>
class PinholeCamera : public AbstractCamera<Scalar> {
 public:
 …
 typedef Eigen::Matrix<Scalar, 2, 1> Vec2;
 typedef Eigen::Matrix<Scalar, 3, 1> Vec3;
 typedef Eigen::Matrix<Scalar, N, 1> VecN;

 PinholeCamera() { param.setZero(); }
 PinholeCamera(const VecN& p) { param = p; }
 …
 virtual Vec2 project(const Vec3& p) const {
 const Scalar& fx = param[0];
 const Scalar& fy = param[1];
 const Scalar& cx = param[2];
 const Scalar& cy = param[3];

 const Scalar& x = p[0];
 const Scalar& y = p[1];
 const Scalar& z = p[2];

 Vec2 res;
 // TODO SHEET 2: implement camera model
 return res;
 }

 virtual Vec3 unproject(const Vec2& p) const {
 const Scalar& fx = param[0];
 const Scalar& fy = param[1];
 const Scalar& cx = param[2];
 const Scalar& cy = param[3];

 Vec3 res;
 // TODO SHEET 2: implement camera model

 return res;
 }
 …
 EIGEN_MAKE_ALIGNED_OPERATOR_NEW
 private:
 VecN param;
};

• Avoid using std::pow() function to maintain the
precision. For example, if you need to compute x2
use multiplication: x ∗ x.

• If your compiler complains about Jet types try
changing the constants in projection and
unprojection functions to Scalar(<constant>). For
example, Scalar(1) instead of 1.

• You can use Newton's method for finding roots to
compute a root of the polynomial given a good
initialization. Usually 3-5 iterations should be
enough for the optimization to converge.

• You can use Horner's method to efficiently compute
polynomials.

https://en.wikipedia.org/wiki/Newton%27s_method
https://en.wikipedia.org/wiki/Horner's_method

Optimization

15

Maximum a Posteriori Estimation

Given a set of parameters and a set of observations that depend on the
parameters we want estimate the value of that is most likely to result in these
observations:

,

This estimate of the parameters is called the Maximum a posteriori (MAP) estimation.

We can rewrite the probability using the Bayes’ Rule:

.

We can drop the denominator, because it does not depend on .

.

“Which state it is most likely to produce such measurements?”

x = {x1, . . . xn}
z = {z1, . . . zm} x

x* = argmax
x

P(x |z)

x*

P(x |z) =
P(z |x)P(x)

P(z)
x

x* = argmax
x

P(z |x)P(x)

16

Likelihood PriorPosteriori

From MAP to Least Squares

• From MAP to least squares problem
• If we assume that the measurements are independent the joint PDF can be factorized:

• Let’s consider a single observation:

• Affected by Gaussian noise:

• The observation model gives us a conditional PDF:

• How do we estimate ?

P(z |x) =
K

∏
k=0

P(zk |x)

zk = h(x) + vk,
vk ∼ N(0, Qk)

P(zk |x) = N(h(x), Qk)
x

17

From MAP to Least Squares

• Gaussian Distribution (matrix form)

.

• Take negative logarithm from both sides:

.

• Maximum of is equivalent to the minimum of .

P(x) =
1

(2π)p/2 |Σ |1/2 exp (−
1
2

(x − μ)TΣ−1(x − μ))

−ln P(x) =
1
2

ln((2π)p |Σ |) +
1
2

(x − μ)TΣ−1(x − μ)

P(x) −ln P(x)

18

From MAP to Least Squares

• Batch least squares
• Formulate residual function:

.

• Maximizing of is equivalent to the minimizing the sum of squared residuals:

.

rk = zk − h(x)

P(x)

E(x) =
1
2 ∑

k

rT
k Qrk

19

From MAP to Least Squares

• Some notes:
• Because of noise, when we take the estimated trajectory and map into the models, they

won’t fit perfectly
• Then we adjust our estimation to get a better estimation (minimize the error)
• The error distribution is affected by noise distribution (information matrix)

• Structure of the least square problem
• Sum of many squared errors
• The dimension of total state variable may be high
• But single error item is easy (only related to two states in our case)
• If we use Lie group and Lie algebra, then it’s a non-constrained least square

20

E(x) =
1
2 ∑

k

rT
k Qrk

Least Squares

• How to solve a least square problem?
• Non-linear, discrete time, non-constrained

• Let’s start from a simple example
• Consider minimizing a squared error:
• When is simple, just solve:

• And we will find the maxima/minima/saddle points

E(x)

∂E(x)
∂x

= 0

21

E(x) =
1
2 ∑

k

rk(x)Trk(x) =
1
2

r(x)Tr(x)

Least Squares

22

• When is a complicated function:

• is hard to solve

• We use iterative methods

•Iterative methods
1. Start from an initial estimate

2. At iteration , we find an increment that minimizes .
3. If the change in error function is small enough, stop (converged).
4. If not, set and iterate to step 2.

E(x)
∂E(x)

∂x
= 0

x0
n Δxn E(xn + Δxn)

xn+1 = xn + Δxn

Gradient Descent

23

• How to find the increment?
• First order methods - Gradient Descent

• Taylor expansion of the objective function
•

The update step:

E(x + Δx) = E(x) + G(x)Δx

Δx = − αG(x)

Gradient Descent Performance

24

• Other shortcomings:
• Slow convergence speed
• Even slower when close to minimum

Zig-zag in steepest descent:

Second Order Methods

25

• Second order methods
• Taylor expansion of the objective function
•

• Setting

The update step:

This is called Newton’s method.

E(x + Δx) = E(x) + G(x)Δx + ΔxTH(x)Δx

∂E(x + Δx)
∂Δx

= 0

H(x)Δx = − G(x) ⟹ Δx = − H−1(x) G(x)

Second Order Methods for Least Squares

26

• Second order method converges more quickly than first
order methods

• But the Hessian matrix may be hard to compute

• Can we avoid the Hessian matrix and also keep second
order’s convergence speed? Yes, for least squares
problems, there exists faster options:
• Gauss-Newton
• Levenberg-Marquardt

Gauss-Newton Method

27

• Gauss-Newton

• Taylor expansion of :
• Then the squared error becomes:

If we set we get:

r(x) r(x + Δx) ≃ r(x) + J(x)Δx

E(x + Δx) =
1
2

r(x)Tr(x) + ΔxTJ(x)Tr(x) +
1
2

ΔxTJ(x)TJ(x)Δx

= F(x) + ΔxTJ(x)Tr(x) +
1
2

ΔxTJ(x)TJ(x)Δx

∂E(x + Δx)
∂Δx

= 0

JT(x)J(x)Δx = − J(x)Tr(x) ⟹ Δx = − (JT(x)J(x))−1 J(x)Tr(x)
≃ H(x) ≃ G(x)Newton’s Method

Gauss-Newton Method

28

• Gauss-Newton uses as an approximation of the Hessian

• Avoids the computation of in the Newton’s method

• But is only semi-positive definite

• maybe singular when has null space

JT(x)J(x)
H(x)

JT(x)J(x)
H(x) JT(x)J(x)

Levenberg-Marquardt Method

29

• Trust region approach: approximation is only valid in a region
• Evaluate if the approximation is good:

.

• If is large, increase the region
• If is small, decrease the region

• LM optimization:

• Assume the approximation is only good within a region
• controls the region based on

ρ =
r(x + Δx) − r(x)

J(x)Δx

ρ
ρ

λ ρ

Real descent/approx. descent

E(x + Δx) =
1
2

r(x + Δx)Tr(x + Δx) + λ∥Δx∥2

Levenberg-Marquardt Method

30

• Trust region problem:

• Expand it just like in GN case, the incremental is:

• The part makes sure that Hessian is positive definite.

• When LM becomes GN.

• When LM becomes gradient descent.

E(x + Δx) =
1
2

r(x + Δx)Tr(x + Δx) + λ∥Δx∥2

Δx = − (JT(x)J(x) + λI)−1 J(x)Tr(x)

λI
λ = 0
λ → ∞

Other Methods

31

• Dog-leg method
• Conjugate gradient method
• Quasi-Newton’s method
• Pseudo-Newton’s method
• …

• You can find more in optimization books if you are interested

• In SLAM/SfM/VO, Gauss-Netwton and Levenberg-Marquardt are used
to solve camera motion, optical-flow, etc.

More details:
Triggs B, McLauchlan PF, Hartley RI, Fitzgibbon AW. Bundle adjustment—a modern
synthesis. InInternational workshop on vision algorithms 1999 Sep 20 (pp. 298-372).
Springer, Berlin, Heidelberg.

Ceres

• We will use Ceres for least-squares
optimization.

• Tutorial: http://ceres-solver.org/tutorial.html

• Curve fitting example:

• Observations: a set of pairs

• Parameters to estimate: .

y = exp(mx + c)
(x, y)

m, c

32

http://ceres-solver.org/tutorial.html

Ceres

• Define your residual class as a functor (overload the () operator)

33

struct ExponentialResidual {
 ExponentialResidual(double x, double y)
 : x_(x), y_(y) {}

 template <typename T>
 bool operator()(const T* const m, const T* const c, T* residual) const {
 residual[0] = T(y_) - exp(m[0] * T(x_) + c[0]);
 return true;
 }

 private:
 // Observations for a sample.
 const double x_;
 const double y_;
};

Ceres

• Build the optimization problem

34

double m = 0.0;
double c = 0.0;

Problem problem;
for (int i = 0; i < kNumObservations; ++i) {
 CostFunction* cost_function =
 new AutoDiffCostFunction<ExponentialResidual, 1, 1, 1>(
 new ExponentialResidual(data[2 * i], data[2 * i + 1]));
 problem.AddResidualBlock(cost_function, NULL, &m, &c);
}

• With auto-diff, Ceres will compute the Jacobians for you

Ceres

• Finally solve it by calling the Solve() function and get the result summary
• You can set some parameters like number of iterations, stop conditions or the linear solver type.

35

 // Run the solver!
 Solver::Options options;
 options.linear_solver_type = ceres::DENSE_QR;
 options.minimizer_progress_to_stdout = true;
 Solver::Summary summary;
 Solve(options, &problem, &summary);

 std::cout << summary.BriefReport() << "\n";
 std::cout << "m : " << m
 << “c : " << c << "\n";

Least-Squares Summary

36

• In the maximum a posteriori estimation we estimate all the state variable given using
a set of noisy measurements.

• The MAP estimation problem with Gaussian noise can be reformulated into a least
square problem

• It can be solved by iterative methods: Gradient Descent, Newton’s method, Gauss-
Newton or Levernberg-Marquardt.

Exercise 2

37

6. Conclusion

In this paper, we present the novel Double Sphere camera
model that is well suited to fisheye cameras. We compare
the proposed camera model to other state-of-the-art camera
models. In addition, we provide an extensive evaluation of
the presented camera models using 16 different calibration
sequences and six different lenses. The evaluation results
demonstrate that the model based on high-order polynomi-
als (i.e., KB 8) shows the lowest reprojection error but is
5-10 times slower than competing models. Both the pro-
posed DS model and the EUCM show very low reprojec-
tion error, with the DS model being slightly more accurate
(less than 1% greater reprojection error compared to KB 8
on all sequences), and the EUCM being slightly faster (nine
times faster projection evaluation than KB 8). Moreover,
both models have a closed-form inverse and do not require
computationally expensive trigonometric operations.

These results demonstrate that models based on spheri-
cal projection present a good alternative to models based on
high-order polynomials for applications where fast projec-
tion, unprojection and a closed-form inverse are required.

Acknowledgment

This work was partially supported by the grant “For3D”
by the Bavarian Research Foundation, the grant CR 250/9-2
“Mapping on Demand” by the German Research Founda-
tion and the ERC Consolidator Grant “3D Reloaded”.

References

[1] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder,
S. Omari, M. W. Achtelik, and R. Siegwart. The EuRoC
micro aerial vehicle datasets. The International Journal of

Robotics Research, 2016.
[2] F. Devernay and O. Faugeras. Straight lines have to be

straight. Machine vision and applications, 13(1):14–24,
2001.

[3] P. Furgale, J. Rehder, and R. Siegwart. Unified temporal
and spatial calibration for multi-sensor systems. In 2013

IEEE/RSJ International Conference on Intelligent Robots

and Systems, pages 1280–1286, Nov 2013.

[4] C. Geyer and K. Daniilidis. A unifying theory for central
panoramic systems and practical implications. In D. Ver-
non, editor, Computer Vision — ECCV 2000, pages 445–461,
Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[5] L. Heng, G. H. Lee, and M. Pollefeys. Self-calibration and
visual slam with a multi-camera system on a micro aerial
vehicle. Autonomous robots, 39(3):259–277, 2015.

[6] J. Kannala and S. S. Brandt. A generic camera model and cal-
ibration method for conventional, wide-angle, and fish-eye
lenses. IEEE transactions on pattern analysis and machine

intelligence, 28(8):1335–1340, 2006.
[7] B. Khomutenko, G. Garcia, and P. Martinet. An enhanced

unified camera model. IEEE Robotics and Automation Let-

ters, 1(1):137–144, Jan 2016.
[8] L. Kneip, H. Li, and Y. Seo. Upnp: An optimal o (n) solution

to the absolute pose problem with universal applicability. In
European Conference on Computer Vision, pages 127–142.
Springer, 2014.

[9] C. Mei and P. Rives. Single view point omnidirectional
camera calibration from planar grids. In Proceedings 2007

IEEE International Conference on Robotics and Automation,
pages 3945–3950, April 2007.

[10] E. Olson. AprilTag: A robust and flexible visual fiducial sys-
tem. In Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA), pages 3400–3407. IEEE,
May 2011.

[11] A. Rituerto, L. Puig, and J. Guerrero. Comparison of om-
nidirectional and conventional monocular systems for visual
slam. In 10th OMNIVIS with RSS, 2010.

[12] D. Scaramuzza, A. Martinelli, and R. Siegwart. A flexible
technique for accurate omnidirectional camera calibration
and structure from motion. In Fourth IEEE International

Conference on Computer Vision Systems (ICVS’06), pages
45–45, Jan 2006.

[13] X. Ying and Z. Hu. Can we consider central catadiop-
tric cameras and fisheye cameras within a unified imaging
model. In T. Pajdla and J. Matas, editors, Computer Vi-

sion - ECCV 2004, pages 442–455, Berlin, Heidelberg, 2004.
Springer Berlin Heidelberg.

[14] Z. Zhang, H. Rebecq, C. Forster, and D. Scaramuzza. Benefit
of large field-of-view cameras for visual odometry. In 2016

IEEE International Conference on Robotics and Automation

(ICRA), pages 801–808, May 2016.

• We want to estimate
• Poses of the camera setup with respect to pattern
• Intrinsic parameters of both cameras
• Extrinsic parameters (rigid body transformation from one camera to the other)

• Minimizing the projection residuals:

,

• - detection of the corner in the image.

• - 3D coordinates in the world (pattern) coordinate frame
• - intrinsic parameter of the camera
• - rigid body transformation from the world (pattern) coordinate frame to

the camera coordinate frame.
• - is the projection function

• Corner points are detected using Apriltags

r = uj − π(Rcwpj
w + tcw, i)

uj j
pj

w
i
Rcw, tcw

π

Exercise 2 Residual

38

struct ReprojectionCostFunctor {
 EIGEN_MAKE_ALIGNED_OPERATOR_NEW
 ReprojectionCostFunctor(const Eigen::Vector2d& p_2d,
 const Eigen::Vector3d& p_3d,
 const std::string& cam_model)
 : p_2d(p_2d), p_3d(p_3d), cam_model(cam_model) {}

 template <class T>
 bool operator()(T const* const sT_w_i, T const* const sT_i_c,
 T const* const sIntr, T* sResiduals) const {
 Eigen::Map<Sophus::SE3<T> const> const T_w_i(sT_w_i);
 Eigen::Map<Sophus::SE3<T> const> const T_i_c(sT_i_c);

 Eigen::Map<Eigen::Matrix<T, 2, 1>> residuals(sResiduals);
 const std::shared_ptr<AbstractCamera<T>> cam =
 AbstractCamera<T>::from_data(cam_model, sIntr);

 // TODO SHEET 2: implement the rest of the functor
 return true;
 }

 Eigen::Vector2d p_2d;
 Eigen::Vector3d p_3d;
 std::string cam_model;
};

Exercise 2

39

and compute the coordinates of the projected points (magenta). By minimizing the
di↵erence between detected points and projected points we can perform the camera
calibration.

• Implement the point projection in the compute projections() function and
test the code by running

./ build/calibration --dataset -path data/euroc_calib/

If your implementation is correct you should be able to see the projections as
in Figure 1. At the moment it is OK that the fitting is not perfect, because we
use the approximate calibration and poses from the initialization procedure.

Figure 1: Point projections with initial calibration. Detected point shown in red
and projected point are shown in magenta.

• Implement the ReprojectionCostFunctor in include/reprojection.h and
optimize() function in src/calibrate.cpp to minimize the reporjection er-
ror using Ceres. If your implementation is correct, after optimization the
projected corners should well align with detected corners as shown in Fig-
ure 2.

• As you have noticed the code supports di↵erent camera models (pinhole, ds,
eucm, kb4) with the command line parameter. For example:

./ build/calibration --dataset -path data/euroc_calib/

--cam -model kb4

Run the calibration for all models. Inspect the output of the program to find
a quantitative measure that can be used to determine how well the camera

2

Exercise 2

40

Figure 2: Point projections after optimization.

models fits the lenses that were used to collect the dataset. Provide summary
and analysis of the calibration results in the PDF file.

Submission instructions

A complete submission consists both of a PDF file with the solutions/answers to
the questions on the exercise sheet and a merge request against the master branch
with the source code that you used to solve the given problems. Please note your
name in the PDF file. Please submit your PDF file with solutions via email to
visnav ws2018@vision.in.tum.de.

References

[1] Vladyslav Usenko, Nikolaus Demmel, and Daniel Cremers. “The Double Sphere
Camera Model”. In: Proc. of the Int. Conference on 3D Vision (3DV). Sept.
2018. eprint: http://arxiv.org/abs/1807.08957.

3

Exercise 2

• Use camera models presented here to get initial projections
• Implement the projection function
• Implement the residual.
• Set up optimization problem. Use local parametrization where necessary.

• Test different models. How well do they fit the lens?

41

