
Practical Course: Vision Based Navigation

Lecture 3: Keypoint Detection, Matching

and Motion Estimation

Prof. Dr. Daniel Cremers

Version: 07.11.2022

Jason Chui, Simon Klenk

Topics Covered

• Keypoint detection

−Corner detection

−Rotation estimation

• Keypoint description

−Scale-Invariant Feature Transform (SIFT)

−Binary Features: BRIEF, ORB

• Keypoint matching

• Robust model fitting with RANSAC

• Epipolar constraint

• Keypoint-based motion estimation

• Place recognition with bag of words

2

Local Features

3

Keypoint Detection

4

Desirable properties of keypoint detectors for visual SLAM / SfM:

• High repeatability

• Localization accuracy

• Robustness

• Invariance

• Computational efficiency

Image source: Svetlana Lazebnik

Harris Corners DoG (SIFT) blobs

Keypoint Matching

5

Desirable properties of keypoint matching for visual SLAM / SfM:

• High recall

• Precision

• Robustness

• Computational efficiency

• One possible approach to keypoint matching: by descriptor

Locality

• features are local, so robust to occlusion and clutter

Distinctiveness

• can differentiate a large database of objects

Quantity

• hundreds or thousands in a single image

Efficiency

• real-time performance achievable

Advantages of Local Features

6

• Desirable properties for SLAM / SfM: distinctiveness, robustness, invariance

• Extract signatures that describe local image regions, examples:

• Histograms over image gradients (SIFT)

• Histograms over Haar-wavelet responses (SURF)

• Binary patterns (BRIEF, BRISK, FREAK, etc.)

• Learning-based descriptors (f.e. Calonder et al., ECCV 2008)

• Rotation-invariance: Align with dominant orientation in local region

• Scale-invariance: Adapt described region extent to keypoint scale

Local Feature Descriptors

7Image source: Svetlana Lazebnik / Calonder et al., ECCV 2010

SIFT gradient pooling BRIEF binary tests

Find features that are invariant to transformations

• geometric invariance: translation, rotation, scale

• photometric invariance: brightness, exposure, ...  

Invariant Local Features

8

Feature Descriptors

Keypoint Detection

9

Suppose we only consider a small window of pixels

• What defines whether a feature is well localized and unique?

Local Measure of Uniqueness

10

How does the window change when you shift by a small amount?

Local Measure of Uniqueness

11

“flat” region: 
no change in any
directions

“edge”: 
no change along
the edge direction

“corner”: 
significant change
in all directions

Define:

 = amount of change when you shift the window by E(u, v) (u, v)

Local Measure of Uniqueness

12

 is small
for all shifts
E(u, v) is small

for some shifts
E(u, v) is small

for no shifts
E(u, v)

What do we want to be?min
u,v

E(u, v)

Consider shifting the window by

• how do the pixels in change?

• compare each pixel before and after by 
Sum of the Squared Differences (SSD)

• this defines an SSD “error”:  

W (u, v)
W

Corner Detection

13

W

E(u, v) = ∑
(x,y)∈W

[I(x + u, y + v) − I(x, y)]2

This can be rewritten: 

For the example above:

• You can move the center of the window to anywhere on the blue unit circle

• Which directions will result in the largest and smallest values?

• We can find these directions by looking at the eigenvectors of

E(u, v) ≈ ∑
(x,y)∈W

[(Ix Iy)(u
v)]

2

= ∑
(x,y)∈W

(u v) (
I2
x IxIy

IyIx I2
y) (u

v)

E

H

Corner Detection: Structure Tensor

14

(u
v)

“structure tensor” H

Define:

 = amount of change when you shift the window by E(u, v) (u, v)

Corner Detection

15

 is small
for all shifts
E(u, v) is small

for some shifts
E(u, v) is small

for no shifts
E(u, v)

• Compute the gradient at each point in the image.

• Create the H matrix from the entries in the gradient.

• Compute the eigenvalues.

• Find points with large response (􏰀 > threshold).

• Choose those points where 􏰀 is a local maximum as features.

λ−
λ−

Corner Detection Recipe

16

I λ+ λ−

• Features from Accelerated
Segment Test 

• Check relation of brightness
values to center pixel along circle 

• Specific number of contiguous
pixels brighter or darker than
center 

• Very fast corner detection

FAST Detector

17
Rosten, Drummond, Fusing Points and Lines for High Performance Tracking, ICCV 2005

Keypoint Descriptors

18

• We know how to detect good points.

• Next question: How to match them?  

• Idea: extract distinctive descriptor vector from a local patch around the keypoint.

Keypoint Descriptors

19

?

• Goal: match keypoints regardless of image transformation.

• This is called transformational invariance.

• Most keypoint detection and description methods are designed to be invariant to:

• Translation, 2D rotation, scale

• They can usually also handle:

• Limited 3D rotations (SIFT works up to about 60 degrees)

• Limited affine transformations (some are fully affine invariant)

• Limited illumination/contrast changes

Invariance

20

?

• Idea: align the descriptor with a dominant 2D orientation

• Example approach: Use the eigenvector of H corresponding to larger eigenvalue

2D Rotation Invariance

21
Figure by Matthew Brown

• Take 16x16 square window around detected feature

• Compute edge orientation (angle of the gradient) for each pixel

• Throw out weak edges (threshold gradient magnitude)

• Create histogram of surviving edge orientations

• Select strong local orientation maxima and create one or more descriptors

2D Rotation Invariance: SIFT

22

• “Binary Robust Independent Elementary
Features” (Calonder et al. ECCV 2010)

• Binary descriptor from intensity comparisons at
sample positions

• Very efficient to compute

• Fast matching distance through Hamming
distance (xor and popcount CPU instructions)

Binary Descriptors: BRIEF

23

• “Oriented Fast and Rotated BRIEF” 
(Rublee et al. ICCV 2011)

• Combination of FAST detector and
BRIEF descriptor

• Rotation-invariant BRIEF: Estimate
dominant orientation from patch
moments (intensity centroid)

• Improved binary pattern

• Very popular for SLAM / VO

Binary Descriptors: ORB

24

Keypoint Matching

25

Keypoint Matching

26

• Main idea: Match keypoints with similar descriptors

Matching Distance

27

• How to define the difference between two descriptors f1, f2?

• Simple approach is to assign keypoints with minimal sum of  
square differences SSD(f1, f2) between entries of the two descriptors

I1 I2

f1 f2

Matching Distance

28

• Better approach: best to second best ratio distance = SSD(f1, f2) / SSD(f1, f2’)

• f2 is best SSD match to f1 in I2

• f2’ is second best SSD match to f1 in I2

• Match should be “unique”

I1 I2

f1 f2f2’

Eliminating Bad Matches

29

• Only accept matches with distance smaller a threshold.

• How to choose the threshold?

50

75

200

feature 
distance

True/False Positives

30

• Choice of threshold affects performance

• Too restrictive: less false positives, but also less true positives

• Too lax: more true positives, but also more false positives

• Can we do more? Yes: Robust model fitting with RANSAC!

50

75

200

feature 
distance

Random Sample Consensus (RANSAC)

31

• Model fitting in presence of noise and outliers

• Example: fitting a line through 2D points

Random Sample Consensus (RANSAC)

32

• Least-squares solution, assuming constant noise for all points

Bad!

Random Sample Consensus (RANSAC)

33

• We only need 2 points to fit a line. Let’s try 2 random points.

Quite ok…

7 inliers

4 outliers

Random Sample Consensus (RANSAC)

34

• Let’s try 2 other random points.

Quite bad..

3 inliers 
8 outliers

Random Sample Consensus (RANSAC)

35

• Let’s try yet another 2 random points.

Quite good!

9 inliers

2 outliers

Random Sample Consensus (RANSAC)

36

• Let’s use the inliers of the best trial so far to perform least squares fitting.

Even better!

Epipolar Constraint

37

Epipolar Constraint on the Image Plane

38
Image: “Epipolar geometry” by Arne Nordmann (norro) used under CC BY-SA 3.0 / relative pose R, T added

• The epipolar constraint can be computed for a pair of matched 2D image points when the
relative camera pose is known, here encoded by (e.g. stereo pair)

• The epipolar plane is spanned by and the two camera centers and

• The epipolar line is the intersection of the epipolar plane and the right image plane

• The epipolar constraint encodes that must lie on the epipolar line in the right image

• is called the Essential Matrix

• Note that the epipolar constraint is not sufficient to guarantee a correct match. A wrong match

my still lie elsewhere on the epipolar line. However, in many cases outliers can be correctly
filtered.

R, T
xL OL OR

xR
x⊤

L
̂T R xR = 0

E = ̂T R

R, T

https://commons.wikimedia.org/wiki/User:Norro
http://creativecommons.org/licenses/by-sa/3.0/

Motion Estimation

39

Motion Estimation from Point Correspondences

40

• 2D-to-2D

• Reprojection error: 

• Linear Algorithm: 8-point, 5-point

• 2D-to-3D

• Reprojection error: 

• Linear Algorithm: DLT PnP

• 3D-to-3D

• 3D geometric error: 

• Linear Algorithm: Arun, Horn

E (Tba, 𝒳) =
N

∑
i=1

ya,i − π (Xi)
2

+ yb,i − π (Tba(Xi))
2

E (Twa, 𝒳) =
N

∑
i=1

ya,i − π (T−1
wa(Xi))

2

E (Tab) =
N

∑
i=1

Ya,i − Tab(Yb,i)
2

Tba

IaIb

Twa
Ia

W

Tba

IaIb

• Given corresponding image point observations  

 

of unknown 3D points  

(expressed in camera frame) 
determine relative motion between the frames

• Reprojection Error (Bundle Adjustment): 

 

Non-linear optimization requires good initialization. Non-convex, non-unique (scale ambiguity).

• Algebraic approach based on epipolar geometry to recover relative pose (up to scale) without
explicitly recovering 3D point location: 8-point, 5-point algorithm

• Applications:

• Filtering pairwise feature matches with RANSAC

• Monocular SLAM / SfM initialisation

𝒴a = {ya,1, …, ya,N}
𝒴b = {yb,1, …, yb,N}

𝒳 = {X1, …, XN}
a

Tba

E (Tb
a, 𝒳) =

N

∑
i=1

ya,i − π (Xi)
2

+ yb,i − π (Tba(Xi))
2

2D-to-2D Motion Estimation

41

Tba

IaIb

• Given a set of 3D points in world frame  
  

and corresponding image observations 
 

determine camera pose in world frame

• Reprojection Error (Pose-only Bundle Adjustment): 

 

Non-linear optimization requires good initialization. Non-convex.

• A.k.a. Perspective-n-Points (PnP) problem, many approaches exist, e.g.

• Direct linear transform (DLT)

• EPnP (Lepetit et al., An accurate O(n) Solution to the PnP problem, IJCV 2009)

• OPnP (Zheng et al., Revisiting the PnP Problem: A Fast, General and Optimal Solution,
ICCV 2013)

• Applications:

• Localize camera in local keypoint map (with RANSAC)

W
𝒳 = {X1, …, XN}

𝒴a = {ya,1, …, ya,N}
Twa

E (Twa, 𝒳) =
N

∑
i=1

ya,i − π (T−1
wa(Xi))

2

2D-to-3D Motion Estimation

42

Twa Ia

W

• Given corresponding 3D points in two 
camera frames  

 

determine the relative camera pose

• 3D geometric error: 

 

Corresponds to least-squares point cloud alignment.

• Closed-form solutions available, e.g. Arun et al., 1987

• Applications:

• Relative pose for calibrated stereo cameras (triangulation of 3D points) or RGB-D cameras
(measured depth)

• Loop-closure correction (variant with scale estimate available for monocular SLAM)

𝒴a = {Ya,1, …, Ya,N}
𝒴b = {Yb,1, …, Yb,N}

Tab

E (Tab) =
N

∑
i=1

Ya,i − Tab(Yb,i)
2

3D-to-3D Motion Estimation

43

Tba

IaIb

Place Recognition

44

• Place recognition aims to find similar images to a given  
query image

• SfM: Which images to match?

• SLAM: Detect loops

• Idea: Discretize the feature-descriptor space by  
hierarchical clustering in a “vocabulary tree”

• visual “words” correspond to leaf-nodes

• words are weighted by distinctiveness: e.g.  
“inverse document frequency”

• Image comparison:

• each feature is assigned to a word by passing it down the tree

• for an image, count occurrence of each word (“term frequency”): bag-of-words vector

• to compare images, compute the distance of (normalized) bag-of-words vectors

• close bag-of-words vectors correspond to potentially similar images

• Vocabulary tree and weights are built offline from large collection of features

• False positives possible: Combine with geometric, temporal, … consistency checks

log(N/Ni)

Place Recognition with Bag of Words

45

Nistér & Stewénius, CVPR 2006

• Image query with “inverse index”:

• For each word store list of images, and for 
each image cache the word count.

• During query, consider only images  
from the inverse index of each word

• Efficient BoW distance (scoring):

• BoW vectors are sparse (most entries are 0)

• For normalised vectors, use 

• L1-norm is often used ()

• Approximate nearest neighbour feature matching using “direct index”

• For each image, store occurrence of nodes at each tree level and list of corresponding
features

• When matching images, only consider features from direct image at given level

∥q − d∥p
p = 2 + ∑

i|qi≠0,di≠0
(qi − di

p
− qi

p
− di

p)
p = 1

Efficient Query and Feature Matching

46

Gálvez-López & Tardós, T-RO 2012

Lessons Learned

• Keypoint detection, description and matching is a well researched topic

• Highly performant corner and blob detectors exist

• Descriptors can be invariant to translation, rotation, scale, viewpoint, brightness, … (e.g. SIFT)

• Binary descriptors are highly efficient and effective (e.g. ORB) and thus popular for real-time

• Keypoint matching by descriptor distance

• Robust matching based on model fitting using RANSAC

• Motion estimation from 2D-to-2D, 2D-to-3D, 3D-to-3D matches

• Image retrieval and loop-closure detection with bag-of-words 

47

Exercise Sheet 3

In the third exercise sheet you will:

• Implement rotation estimation and descriptor matching for a simple variant of ORB.

• Filter inlier matches for stereo pairs using the epipolar constraint.

• Filter inlier matches for arbitrary pairs using RANSAC with the 5-point algorithm.

• Implement bag-of-words for efficient image retrieval using an inverse index.

48

