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Topics Covered

• Keypoint detection 
−Corner detection 
−Rotation estimation 

• Keypoint description 
−Scale-Invariant Feature Transform (SIFT)  
−Binary Features: BRIEF, ORB 

• Keypoint matching 
• Robust model fitting with RANSAC 
• Epipolar constraint 
• Keypoint-based motion estimation 
• Place recognition with bag of words
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Local Features
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Keypoint Detection
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Desirable properties of keypoint detectors for visual SLAM / SfM:  
• High repeatability 
• Localization accuracy 
• Robustness 
• Invariance 
• Computational efficiency

Image source: Svetlana Lazebnik 

Harris Corners DoG (SIFT) blobs



Keypoint Matching
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Desirable properties of keypoint matching for visual SLAM / SfM: 
• High recall 
• Precision 
• Robustness 
• Computational efficiency  
• One possible approach to keypoint matching: by descriptor 



Locality 

• features are local, so robust to occlusion and clutter  

Distinctiveness 

• can differentiate a large database of objects 

Quantity 

• hundreds or thousands in a single image  

Efficiency 

• real-time performance achievable 

Advantages of Local Features
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• Desirable properties for SLAM / SfM: distinctiveness, robustness, invariance 
• Extract signatures that describe local image regions, examples:  

• Histograms over image gradients (SIFT) 
• Histograms over Haar-wavelet responses (SURF) 
• Binary patterns (BRIEF, BRISK, FREAK, etc.) 
• Learning-based descriptors (f.e. Calonder et al., ECCV 2008) 

• Rotation-invariance: Align with dominant orientation in local region  
• Scale-invariance: Adapt described region extent to keypoint scale 

Local Feature Descriptors

7Image source: Svetlana Lazebnik / Calonder et al., ECCV 2010

SIFT gradient pooling BRIEF binary tests



Find features that are invariant to transformations  
• geometric invariance: translation, rotation, scale 
• photometric invariance: brightness, exposure, ...  

Invariant Local Features
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Feature Descriptors



Keypoint Detection
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Suppose we only consider a small window of pixels 
• What defines whether a feature is well localized and unique? 

Local Measure of Uniqueness
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How does the window change when you shift by a small amount?

Local Measure of Uniqueness
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“flat” region: 
no change in any 
directions  

“edge”: 
no change along 
the edge direction  

“corner”: 
significant change 
in all directions  



Define: 
 = amount of change when you shift the window by  E(u, v) (u, v)

Local Measure of Uniqueness
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 is small 
for all shifts
E(u, v)  is small 

for some shifts
E(u, v)  is small 

for no shifts
E(u, v)

What do we want  to be?min
u,v

E(u, v)



Consider shifting the window  by  

• how do the pixels in  change?  

• compare each pixel before and after by 
Sum of the Squared Differences (SSD)  

• this defines an SSD “error”:  

W (u, v)
W

Corner Detection
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W

E(u, v) = ∑
(x,y)∈W

[I(x + u, y + v) − I(x, y)]2



This can be rewritten: 

 

For the example above: 

• You can move the center of the window to anywhere on the blue unit circle  

• Which directions will result in the largest and smallest  values?  

• We can find these directions by looking at the eigenvectors of  

E(u, v) ≈ ∑
(x,y)∈W

[(Ix Iy)(u
v)]

2

= ∑
(x,y)∈W

(u v) (
I2
x IxIy

IyIx I2
y ) (u

v)

E

H

Corner Detection: Structure Tensor
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(u
v)

“structure tensor” H



Define: 
 = amount of change when you shift the window by  E(u, v) (u, v)

Corner Detection
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 is small 
for all shifts
E(u, v)  is small 

for some shifts
E(u, v)  is small 

for no shifts
E(u, v)



• Compute the gradient at each point in the image. 
• Create the H matrix from the entries in the gradient. 
• Compute the eigenvalues. 
• Find points with large response (�  > threshold). 
• Choose those points where �  is a local maximum as features.

λ−
λ−

Corner Detection Recipe
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I λ+ λ−



• Features from Accelerated 
Segment Test 

• Check relation of brightness 
values to center pixel along circle 

• Specific number of contiguous 
pixels brighter or darker than 
center 

• Very fast corner detection

FAST Detector
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Rosten, Drummond, Fusing Points and Lines for High Performance Tracking, ICCV 2005 



Keypoint Descriptors
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• We know how to detect good points. 

• Next question: How to match them?  

• Idea: extract distinctive descriptor vector from a local patch around the keypoint.

Keypoint Descriptors
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• Goal: match keypoints regardless of image transformation. 

• This is called transformational invariance. 

• Most keypoint detection and description methods are designed to be invariant to: 

• Translation, 2D rotation, scale 

• They can usually also handle: 

• Limited 3D rotations (SIFT works up to about 60 degrees)  

• Limited affine transformations (some are fully affine invariant)  

• Limited illumination/contrast changes

Invariance
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• Idea: align the descriptor with a dominant 2D orientation  

• Example approach: Use the eigenvector of H corresponding to larger eigenvalue

2D Rotation Invariance
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Figure by Matthew Brown 



• Take 16x16 square window around detected feature  

• Compute edge orientation (angle of the gradient) for each pixel  

• Throw out weak edges (threshold gradient magnitude)  

• Create histogram of surviving edge orientations 

• Select strong local orientation maxima and create one or more descriptors

2D Rotation Invariance: SIFT
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• “Binary Robust Independent Elementary 
Features” (Calonder et al. ECCV 2010) 

• Binary descriptor from intensity comparisons at 
sample positions  

• Very efficient to compute  

• Fast matching distance through Hamming 
distance (xor and popcount CPU instructions)

Binary Descriptors: BRIEF
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• “Oriented Fast and Rotated BRIEF” 
(Rublee et al. ICCV 2011) 

• Combination of FAST detector and 
BRIEF descriptor  

• Rotation-invariant BRIEF: Estimate 
dominant orientation from patch 
moments (intensity centroid) 

• Improved binary pattern 

• Very popular for SLAM / VO

Binary Descriptors: ORB
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Keypoint Matching
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Keypoint Matching
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• Main idea: Match keypoints with similar descriptors



Matching Distance
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• How to define the difference between two descriptors f1, f2?  

• Simple approach is to assign keypoints with minimal sum of  
square differences SSD(f1, f2) between entries of the two descriptors 

I1 I2

f1 f2



Matching Distance
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• Better approach: best to second best ratio distance = SSD(f1, f2) / SSD(f1, f2’)  

• f2 is best SSD match to f1 in I2  

• f2’ is second best SSD match to f1 in I2 

• Match should be “unique”

I1 I2

f1 f2f2’



Eliminating Bad Matches
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• Only accept matches with distance smaller a threshold. 

• How to choose the threshold? 

50

75

200

feature 
distance



True/False Positives
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• Choice of threshold affects performance 

• Too restrictive: less false positives, but also less true positives 

• Too lax: more true positives, but also more false positives  

• Can we do more? Yes: Robust model fitting with RANSAC!

50

75

200

feature 
distance



Random Sample Consensus (RANSAC)
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• Model fitting in presence of noise and outliers 

• Example: fitting a line through 2D points 



Random Sample Consensus (RANSAC)
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• Least-squares solution, assuming constant noise for all points

Bad!



Random Sample Consensus (RANSAC)
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• We only need 2 points to fit a line. Let’s try 2 random points.

Quite ok… 

7 inliers 
4 outliers



Random Sample Consensus (RANSAC)
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• Let’s try 2 other random points.

Quite bad..  

3 inliers 
8 outliers  



Random Sample Consensus (RANSAC)
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• Let’s try yet another 2 random points.

Quite good!  

9 inliers 
2 outliers



Random Sample Consensus (RANSAC)
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• Let’s use the inliers of the best trial so far to perform least squares fitting.

Even better!



Epipolar Constraint
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Epipolar Constraint on the Image Plane
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Image: “Epipolar geometry” by Arne Nordmann (norro) used under CC BY-SA 3.0 / relative pose R, T added

• The epipolar constraint can be computed for a pair of matched 2D image points when the 
relative camera pose is known, here encoded by  (e.g. stereo pair) 

• The epipolar plane is spanned by  and the two camera centers  and  
• The epipolar line is the intersection of the epipolar plane and the right image plane 
• The epipolar constraint encodes that  must lie on the epipolar line in the right image 

 

•  is called the Essential Matrix 
• Note that the epipolar constraint is not sufficient to guarantee a correct match. A wrong match 

my still lie elsewhere on the epipolar line. However, in many cases outliers can be correctly 
filtered. 

R, T
xL OL OR

xR
x⊤

L
̂T R xR = 0

E = ̂T R

R, T

https://commons.wikimedia.org/wiki/User:Norro
http://creativecommons.org/licenses/by-sa/3.0/


Motion Estimation
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Motion Estimation from Point Correspondences 
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• 2D-to-2D 

• Reprojection error: 

 

• Linear Algorithm: 8-point, 5-point 

• 2D-to-3D 

• Reprojection error: 

 

• Linear Algorithm: DLT PnP 

• 3D-to-3D 

• 3D geometric error: 

 

• Linear Algorithm: Arun, Horn

E (Tba, 𝒳) =
N

∑
i=1

ya,i − π (Xi)
2

+ yb,i − π (Tba(Xi))
2

E (Twa, 𝒳) =
N

∑
i=1

ya,i − π (T−1
wa(Xi))

2

E (Tab) =
N

∑
i=1

Ya,i − Tab(Yb,i)
2

Tba

IaIb

Twa
Ia

W

Tba

IaIb



• Given corresponding image point observations  

 

of unknown 3D points  

(expressed in camera frame ) 
determine relative motion  between the frames  

• Reprojection Error (Bundle Adjustment): 

 

Non-linear optimization requires good initialization. Non-convex, non-unique (scale ambiguity). 

• Algebraic approach based on epipolar geometry to recover relative pose (up to scale) without 
explicitly recovering 3D point location: 8-point, 5-point algorithm 

• Applications: 

• Filtering pairwise feature matches with RANSAC 

• Monocular SLAM / SfM initialisation

𝒴a = {ya,1, …, ya,N}
𝒴b = {yb,1, …, yb,N}

𝒳 = {X1, …, XN}
a

Tba

E (Tb
a, 𝒳) =

N

∑
i=1

ya,i − π (Xi)
2

+ yb,i − π (Tba(Xi))
2

2D-to-2D Motion Estimation 
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• Given a set of 3D points in world frame  
  

and corresponding image observations 
 

determine camera pose  in world frame 

• Reprojection Error (Pose-only Bundle Adjustment): 

 

Non-linear optimization requires good initialization. Non-convex. 

• A.k.a. Perspective-n-Points (PnP) problem, many approaches exist, e.g.  

• Direct linear transform (DLT)  

• EPnP (Lepetit et al., An accurate O(n) Solution to the PnP problem, IJCV 2009)  

• OPnP (Zheng et al., Revisiting the PnP Problem: A Fast, General and Optimal Solution, 
ICCV 2013) 

• Applications: 

• Localize camera in local keypoint map (with RANSAC)

W
𝒳 = {X1, …, XN}

𝒴a = {ya,1, …, ya,N}
Twa

E (Twa, 𝒳) =
N

∑
i=1

ya,i − π (T−1
wa(Xi))

2

2D-to-3D Motion Estimation 
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• Given corresponding 3D points in two 
camera frames  

 

determine the relative camera pose    

• 3D geometric error: 

 

Corresponds to least-squares point cloud alignment. 

• Closed-form solutions available, e.g. Arun et al., 1987 

• Applications: 

•  Relative pose for calibrated stereo cameras (triangulation of 3D points) or RGB-D cameras 
(measured depth) 

• Loop-closure correction (variant with scale estimate available for monocular SLAM) 

𝒴a = {Ya,1, …, Ya,N}
𝒴b = {Yb,1, …, Yb,N}

Tab

E (Tab) =
N

∑
i=1

Ya,i − Tab(Yb,i)
2

3D-to-3D Motion Estimation 
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Tba

IaIb



Place Recognition
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• Place recognition aims to find similar images to a given  
query image 

• SfM: Which images to match? 

• SLAM: Detect loops 

• Idea: Discretize the feature-descriptor space by  
hierarchical clustering in a “vocabulary tree” 

• visual “words” correspond to leaf-nodes  

• words are weighted by distinctiveness: e.g.  
“inverse document frequency”  

• Image comparison: 

• each feature is assigned to a word by passing it down the tree 

• for an image, count occurrence of each word (“term frequency”): bag-of-words vector 

• to compare images, compute the distance of (normalized) bag-of-words vectors 

• close bag-of-words vectors correspond to potentially similar images 

• Vocabulary tree and weights are built offline from large collection of features 

• False positives possible: Combine with geometric, temporal, … consistency checks

log(N/Ni)

Place Recognition with Bag of Words

45

Nistér & Stewénius, CVPR 2006



• Image query with “inverse index”: 

• For each word store list of images, and for 
each image cache the word count. 

• During query, consider only images  
from the inverse index of each word 

• Efficient BoW distance (scoring): 

• BoW vectors are sparse (most entries are 0) 

• For normalised vectors, use 
 

• L1-norm is often used ( ) 

• Approximate nearest neighbour feature matching using “direct index” 

• For each image, store occurrence of nodes at each tree level and list of corresponding 
features 

• When matching images, only consider features from direct image at given level

∥q − d∥p
p = 2 + ∑

i|qi≠0,di≠0
( qi − di

p
− qi

p
− di

p)
p = 1

Efficient Query and Feature Matching
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Gálvez-López & Tardós, T-RO 2012



Lessons Learned

• Keypoint detection, description and matching is a well researched topic 

• Highly performant corner and blob detectors exist  

• Descriptors can be invariant to translation, rotation, scale, viewpoint, brightness, … (e.g. SIFT) 

• Binary descriptors are highly efficient and effective (e.g. ORB) and thus popular for real-time 

• Keypoint matching by descriptor distance 

• Robust matching based on model fitting using RANSAC 

• Motion estimation from 2D-to-2D, 2D-to-3D, 3D-to-3D matches 

• Image retrieval and loop-closure detection with bag-of-words 
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Exercise Sheet 3

In the third exercise sheet you will: 
• Implement rotation estimation and descriptor matching for a simple variant of ORB. 
• Filter inlier matches for stereo pairs using the epipolar constraint. 
• Filter inlier matches for arbitrary pairs using RANSAC with the 5-point algorithm. 
• Implement bag-of-words for efficient image retrieval using an inverse index.
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