
Neural Network Design Patterns in Computer Vision
IN2107 Seminar Report, Summer 2023/24

Thanh Huan Hoang
Student

huan.hoang@tum.de

Daniel Lehmberg
Student

daniel.lehmberg@tum.de

Jinxin Ai
Student

jinxin.ai@tum.de

Marko Alten
Student

marko.alten@tum.de

Kevin Dietrich
Student

kevin.dietrich@tum.de

Johannes Lehnerdt
Student

j.lehnerdt@tum.de

Roman Pflugfelder
Instructor

roman.pflugfelder@tum.de

Machine learning with neural networks has become the prevalent view of visual learning in computer vision. Each year, the
scientific community proposes dozens of new models as solutions for various visual tasks. To better assess these models
and compare them for a better understanding of their advantages and disadvantages, a deeper understanding of the building
blocks that constitute a neural network is needed.

A similar problem is known in software engineering where progress in programming languages, the complexity of software
and the need for reusability have triggered the appearance of design patterns. A software design pattern is a module or
best practice to solve a particular programming problem in a very principal way. Examples are particular data structures or
object-oriented best practices such as factories.

This seminar report attempts to distil in the same spirit design patterns of neural network models. We distinguish patterns
arising at the level of network architecture and network layers. The architecture is a principled design of a neural network on
a functional level, considering the possible inputs and outputs of a function and a functional classification. Generally, a neural
network comprises several layers or sub-functions considering a specific sub-step or task in the overall network architecture.

The following neural design patterns result from six students’ seminar work. In the first step, the students proposed and
discussed several neural models and identified neural design patterns. In the second step, each student chose one design
pattern and analysed its intent, the history of the pattern, the limitations and its practical application. The results of these
analyses are summarised in this report.

1. Convolutional Neural Network

With the increasing popularity in recent years [1], convolutional neural networks (CNNs) have emerged and become a foun-
dational design pattern for deep learning models. They are a type of feed-forward neural network whose architecture consists
of alternating layers of convolutional filters and pooling operations, allowing them to efficiently extract image features and
patterns while reducing dimensionality. This ability enables the models to learn a spatial hierarchy in images, ranging from
simple to complex features, making them extremely powerful for computer vision tasks.

1.1. Intent

CNNs were designed to automatically extract features or patterns from structured data by leveraging local correlations and
using kernels (convolutional filters) [1]. Images are an excellent example of local correlation in data, as nearby pixels tend
to have similar colors and intensities. The hierarchical feature extraction process is accomplished by applying kernels that
detect patterns within local regions, enabling CNNs, as they go deeper, to identify low-level features such as edges, mid-level
features like shapes and textures, and high-level features such as objects and scenes. Each filter is trained to extract a distinct
feature, enabling convolutional layers to incorporate multiple filters to detect various features.

Moreover, CNNs add more structure to the model through weight sharing in each filter, which reduces the number of parame-
ters and computational cost compared to a multilayer perceptron (MLP) [2], where each neuron in one layer connects to every
neuron in the subsequent layer. Weight sharing means the same filter (same set of weights) is applied across different input
regions, allowing the network to detect the same feature regardless of its position. Due to this, CNNs exhibit translational
equivariance. Using weight sharing and local connectivity, CNNs can effectively process high-dimensional data [1].

1.2. Block Diagram

Figure 1: Architecture of CNNs for image classification and image segmentation

Figure 1 shows the architecture of CNNs in common tasks. A common pattern is alternating between convolution and pooling
(subsampling) layers. The convolutional layer, which already includes the activation function, extracts features while the
pooling layer selects them. As the network grows deeper, dimensions (width and height) decrease while the number of filters
increases to capture more complex patterns. The final layers vary depending on the task. Usually, for image classification,
fully-connected layers are used, while image segmentation utilizes upsampling followed by a 1x1 convolution layer.

1.3. Limitations

Despite numerous advantages, such as automatic feature extraction without manual feature engineering, efficient compu-
tation, and variable input size (for fully convolutional networks), CNNs still have some limitations. The first one is the

assumption about local correlation, which is true for grid-like structured data like images or time-series data like audio [3]. In
the case of images, each pixel is related to its neighboring pixels, and in the case of audio, it captures temporal dependencies.
However, this is not true for other data types like tabular data. Using other machine learning models, such as decision trees
or MLPs, may be more appropriate for tabular data as they do not assume any data locality.

Convolutional layers have a restricted receptive field, which can hinder the network’s ability to capture global context, espe-
cially when relevant features appear unexpectedly in distant regions. This can lead to reduced performance in tasks requiring
comprehensive spatial understanding. Initially developed for natural language processing, attention mechanisms have been
integrated into some CNN models [4] to address this limitation. These mechanisms allow the network to focus on specific
parts of inputs, facilitating global context capture. Another solution is using dilated convolutions, which increase the recep-
tive field without adding more parameters or computation [5]. By skipping input values with a particular step size, dilated
convolutions enable the model to capture global context while maintaining computational efficiency.

1.4. History

The creation of CNNs was inspired by Hubel and Wiesel’s experiments [6] on cats’ visual cortex, which revealed that simple
cells respond to oriented edges at specific locations, while complex cells are sensitive to edge orientations regardless of posi-
tion. This prompted Kunihiko Fukushima in the 1980s to develop the Neocognitron [7] using alternating S-layers (equivalent
to convolutional layers) and C-layers (equivalent to pooling layers). Since the Neocognitron lacked backpropagation and
the structured design in modern CNNs, LeNet-5 [8] is often regarded as the foundational CNN model. Introduced by Yann
LeCun in 1998, LeNet-5 was designed for handwritten digit recognition, using alternating convolutional and pooling layers,
followed by fully connected layers. It uses the tanh activation function and average pooling. Modern CNNs prefer max
pooling and ReLU-like functions for better feature capture and vanishing gradient mitigation. LeNet-5 was limited by the
computational resources available at the time, resulting in shallower architectures compared to modern CNNs.

AlexNet [9], a significant milestone in 2012, drastically improved image classification on the ImageNet dataset by cutting the
ImageNet top-5 error almost in half. This was achieved by using ReLU activations and GPU acceleration, allowing for train-
ing a deeper network and boosting performance. In 2014, VGGNet [10] further increased the depth of CNNs, demonstrating
that deeper networks do not necessarily lead to better performance. This issue was addressed with ResNet’s skip connections
[11] in 2015. Also, in 2014, GoogLeNet introduced the inception layer [12], allowing for multiple kernel sizes within the
same layer and incorporating dimension reduction techniques to enhance efficiency. EfficientNet [13], introduced in 2019,
uses compound scaling to balance model complexity with computational efficiency.

Recent CNN models like HRNet [14], CoAtNet [15], and ConvNeXt [16] continue to innovate, focusing on high-resolution
feature integration, integration of convolution and attention mechanisms, and flexible connectivity patterns, respectively.

1.5. Application

CNNs are applied not only in the field of computer vision but also in other domains where data exhibits local correlations:

• Image classification: Many CNN models were originally developed for this purpose. The Neocognitron [7] was used
to recognize handwritten characters, while LeNet-5 [8] focused on handwritten digits. Following the introduction of
the ImageNet dataset and the success of AlexNet [9], subsequent models aimed to achieve lower error rates in image
classification tasks using this dataset.

• Image segmentation: This task involves assigning each pixel of an image to a predefined class, indicating the object
class to which it belongs. Fully convolutional networks, like the U-Net architecture [17], are commonly used.

• Object detection: CNNs can separately detect objects using bounding boxes within an image. An example of this is
using CNNs in smart cars to detect humans, traffic lights, or other vehicles in real time [18].

• Natural language processing: Although less common, CNNs demonstrate significant capability in this field. They
can process and generate audio signals by leveraging temporal correlations. For instance, WaveNet [19] can synthesize
speech, convert text to speech, compose music across various genres, and be adapted for speech recognition tasks.

2. Diffusion Models

Diffusion models are generative models that learn to gradually recover input data by reversing a process that iteratively adds
noise to the training data [20]. Having made tremendous progress in recent years, diffusion models are now achieving truly
impressive results [21] and have become one of the hottest topics in the field of computer vision [20].

2.1. Intent

Diffusion models aim to generate new, high-quality, and diverse data points. These data points can be images, videos, 3D
shapes, or point clouds [20]. Apart from that, diffusion models can also be used for molecular design [22] or as a defense
mechanism for adversarial attacks [23].

However, the most common application of diffusion models is in the image domain. In particular, they can be used not only
for image generation, but also for other image-related tasks such as image super-resolution, image editing, image inpainting,
or image segmentation [20].

2.2. Block Diagram

The fundamental principle underlying diffusion models is the diffusion process. As illustrated in Figure 2, the diffusion
process can be divided into two distinct processes: the forward process and the reverse process.

Figure 2: Distinction of the diffusion process into the forward process and the reverse process.

In the forward process, a small amount of Gaussian noise is gradually added, starting with the original data point x0. This
is done T times until the original data point is completely transformed into pure random noise xT . The whole forward
process is fixed, so there is no learning involved [24, 25]. This is not the case for the reverse process, which recovers the
original data point by learning to gradually reverse the forward process. This means that, starting from pure random noise
xT , a small amount of Gaussian noise is removed for a total of T times. By doing so, the original data point x0 is restored [20].

The reverse process can be approximated by a Gaussian probability distribution if the steps of the forward process are small
enough. For figuring out the mean and the variance of this probability distribution a neural network is used, typically a
modified version of the U-Net architecture [25]. Removing the noise is done in several steps, as this is easier for the model
to learn than doing it in one step [22]. Figure 3 visualizes the results of the diffusion process, using the example of images as
data points.

Figure 3: Visualization of the diffusion process for images as data points.

2.3. Limitations

Despite all the advantages that make diffusion models state-of-the-art in generative modeling, they also have some limita-
tions. Most importantly, they have a low inference speed compared to other generative models. This is because they have
to perform several steps at inference time [26, 20]. Diffusion models are also computationally expensive to train because
training them involves repeatedly performing functions in a high-dimensional data space [27].

Apart from that, diffusion models are largely limited to generating samples that are similar to the training data [28]. This is
because they attempt to learn the distribution of the training data during the training process and then sample from this distri-
bution. Furthermore, diffusion models sometimes also generate data points that are inconsistent with the real world, as they
can hallucinate non-existent objects. Therefore, they are not 100% accurate in terms of truthfulness [22]. Another limitation
of diffusion models is that they can reveal training data. This is problematic if it contains sensitive or private information
[27]. Finally, diffusion models tend to reproduce or exacerbate biases that are present in the training data [24, 27]. This could
not only be discriminatory but could also reinforce stereotypes.

2.4. History

In 2015, Sohl-Dichstein et al. [29] introduced diffusion probabilistic models. The basic idea of these models is to gradually
destroy the structure in a data distribution and then learn a reverse process that restores it. This technique has its origins in the
field of statistical physics. However, its introduction into the field of machine learning sparked the development of a whole
new branch of generative models. A huge leap in sample quality was achieved by Ho et al. [24] in 2020. This was the result
of some groundbreaking changes such as the use of U-Nets and learning the reverse process by estimating the variance.

Nichol et al. (2021) [21] proposed several improvements to the diffusion process such as learning the variance of the reverse
process or using a hybrid learning objective. This led to a better log-likelihood, similar sample quality, and much faster
sampling. Furthermore, several improvements to the architecture of diffusion models were proposed by Dhariwal et al. [26]
(2021). For example, increasing the number of attention layers and attention heads in the U-Net architecture and performing
adaptive group normalization proved to be beneficial. As a result, the sample quality was improved significantly which led
to diffusion models outperforming state-of-the-art generative models.

Over the past few years, several text-to-image models have been published that build on diffusion models and can generate
really impressive and realistic images. The best known are DALLE·2 [30], Imagen [31], Midjourney [32] and Stable Diffusion
[27]. More recently, also good-performing text-to-video models have been published, such as Imagen Video [33] and SORA
[34].

2.5. Application

As diffusion models have several advantages and limitations, it always depends on the specific use case if it is beneficial to
apply them. In the following, an overview will be given of the use cases in which it makes sense to apply diffusion models
and the use cases in which it does not.

Diffusion models are state-of-the-art in terms of generative modeling [26]. Consequently, they are a really good option if
high-quality samples are needed [27]. Apart from that, diffusion models are a good choice if highly diverse data is needed.
This is because they achieve a higher diversity than other generative models [26]. Further use cases for applying diffusion
models are if the training process should be stable [20], if the used data has a complex distribution [27], or if completely new
samples should be generated that have never been seen before by humans [25].

However, there are also use cases in which other types of generative models are preferable to diffusion models. In particular,
if sampling needs to be very fast, such as for real-time applications, diffusion models are not suitable [26]. They are also
usually not a good choice if a custom model should be trained unless lots of computing power and training data are available.
Finally, if the generated data must be 100% accurate in terms of truthfulness, diffusion models are also not well suited [22].

3. Autoencoder

Autoencoders are an unsupervised learning technique used in artificial neural networks [35]. The network captures the most
important features of the data by compressing the input into a lower-dimensional latent space and then reconstructing it back
to its original dimension. This process involves two main components: the encoder and the decoder [36]. For practical
implementation, refer to the Autoencoder code repository used in this seminar.

3.1. Intent

The primary intent of an autoencoder is to learn an efficient representation (encoding) of a set of data, typically for the
purposes of dimensionality reduction or feature learning. Autoencoders aim to capture the most salient features of the input
data by training a neural network to compress the input into a latent-space representation and then reconstruct the output
from this representation [37].

3.2. Block Diagram

Text
x z x'

Encoder:

Prior distribution:

Decoder:

Figure 4: Variational Autoencoder

As illustrated in Figure 4 Kingma et al. [38] introduced a revolutionary and creative advancement in the field of autoencoders
in 2014. This innovation significantly enhanced the traditional autoencoder architecture by introducing a unique manipulation
of the hidden layer. In a standard autoencoder, the hidden layer learns a deterministic mapping of the input data. However,
Kingma et al. [38] transformed this approach by treating the hidden layer as a probability distribution of a latent variable z.
This is achieved by integrating the encoder and decoder into a probabilistic framework, allowing the model to learn not just
a single point representation but a distribution that captures the uncertainty and variability in the data.
The key mathematical formulation can be summarized as follows:

log pθ(x) = Eqϕ(z|x) [log pθ(x, z)− log qϕ(z|x)]
= Eqϕ(z|x) [log pθ(x|z)p(z)− log qϕ(z|x)] Chain rule of probability

= Eqϕ(z|x) [log pθ(x|z)] + Eqϕ(z|x) [log p(z)− log qϕ(z|x)] Split the expectation

= Eqϕ(z|x) [log pθ(x|z)]−DKL (qϕ(z|x) ∥ p(z)) Definition of KL divergence

• Maximizing Eqϕ(z|x) [log pθ(x|z)]: This term represents the expected log-likelihood of the data given the latent vari-
ables, and maximizing it improves the reconstruction accuracy of the decoder.

https://github.com/ASH30KW/seminar.git

• Minimizing DKL (qϕ(z|x) ∥ p(z)): This term represents the Kullback-Leibler (KL) divergence between the approxi-
mate posterior distribution qϕ(z|x) and the prior distribution p(z). Minimizing it ensures that the learned latent variable
distribution is close to the prior distribution, promoting regularization and preventing overfitting.

3.3. Limitations

• Autoencoders: While adept at learning representations, face several limitations. They often suffer from lossy recon-
struction, meaning the output may not perfectly replicate the input, leading to information loss. Additionally, they are
prone to overfitting, particularly when the model is overly complex or the dataset is small. The interpretability of the
learned latent space can be challenging, making it less useful for downstream tasks. Furthermore, autoencoders trained
on specific data distributions may struggle to generalize well to unseen data or different distributions [39].

• Variational Autoencoders: Training VAEs can be computationally intensive and requires careful hyperparameter
tuning to balance reconstruction loss and KL divergence. They often produce blurry reconstructions, suffer from mode
collapse, and face approximation errors due to the simplified posterior distribution. The latent space can be challenging
to interpret, and the model’s performance is sensitive to the choice of prior distribution. Additionally, VAEs can struggle
with scalability issues and typically do not match the generative quality of Generative Adversarial Networks (GANs)
[40]. Optimizing the KL divergence term can be difficult, and the stochastic nature of VAEs introduces variability in
the training process, making it less stable and requiring more iterations to converge [41].

3.4. History

Autoencoders were initially introduced in the 1980s by Hinton and the PDP group to solve the issue of ”backpropagation
without a teacher,” by utilizing the input data as the teacher [42]. Another significant advancement is the denoising autoen-
coder introduced by Vincent et al. in 2008 [43]. Their core idea involves adding noise to the input signal to improve the
model’s generalization capabilities. This approach is inspired by human object recognition, where humans can accurately
identify objects even in noisy or degraded images. In 2014, Kingma et al. introduced the variational autoencoder (VAE),
marking a significant advancement in the field [38]. By employing a probabilistic approach to learning latent representations,
VAEs enabled the creation of more robust generative models. This development is considered one of the most revolutionary
improvements in the realm of autoencoders to date. Recent modifications to the autoencoder have primarily focused on al-
tering the cost function. Tolstikhin et al. proposed using the Wasserstein distance instead of the KL divergence, due to the
advantageous properties of the Wasserstein distance [44]. While there have been few fundamental changes to the autoencoder
itself in recent years, significant advancements have been made in its application to fields such as computer vision, natural
language processing, and medical modeling.

3.5. Application

Autoencoders have found numerous applications across various domains. For instance, Zhao et al. introduced an unsuper-
vised autoencoder-based feature learning method specifically designed for cybersecuritym [45]. This approach leverages
advanced neural network techniques to develop a hyperspectral image classification method, which excels in malware clas-
sification and network-based anomaly detection. Their method combines a Deep Stacked Autoencoder (DSAE) with a 3D
Deep Residual Network (3DDRN), enhancing the capability to identify and classify intricate patterns in cybersecurity data
[45].
Autoencoders have proven to be invaluable in healthcare applications, particularly in the realm of medical image processing.
Noteworthy advancements have been spearheaded by Stefan Röhrl and his team, in collaboration with the Institute of Data
Processing at the Technical University of Munich and Translatum [46]. Their pioneering work integrates Principal Compo-
nent Analysis (PCA) methods with autoencoder techniques for the feature extraction and classification of white blood cells.
This innovative approach aims to enhance the accuracy and efficiency of medical diagnoses. While this research is ongoing,
its promising potential could significantly advance human healthcare in the future.
In conclusion, the Autoencoder is a versatile tool in the neural network design paradigm, providing a robust approach to
representation learning, dimensionality reduction, and generative modeling. However, there is still a great deal of room for
improvement, which offers significant potential for advancements that can benefit mankind.

4. Attention

Attention is an architectural pattern for neural networks that has gained significant popularity in recent years. This mechanism
is now integral to a variety of network architectures. Attention enables the network to focus on important features of the input
and/or output data. The primary components facilitating this behavior are queries, keys, and values.

4.1. Intent

In any dataset, certain parts are more crucial than others for tasks such as image classification, while some parts are less
relevant. The purpose of the attention mechanism is to enable neural networks to dynamically focus on the most important
parts of the data. This allows the networks to manage the inherent complexity and volume of the data more effectively.
This capability is particularly advantageous in tasks like machine translation, text summarization, and image recognition. By
employing attention, models enhance their ability to capture distant dependencies and complex patterns, thereby improving
overall performance[47][48].

4.2. Block Diagram

Figure 5: Single-Head Attention [47] Figure 6: Multi-Head Attention [47]

Figure 5 shows the basic architecture of a scaled dot-product attention block named Single-Head Attention. Figure 6 shows
the parallel arrangement of several Single-Head Attention blocks called Multi-Head Attention.

The mechanism depicted in figure 6 was introduced by Vaswani et al. [47] in 2017 and forms the foundation for transformer
architectures. The basic concept revolves around three matrices: Queries, Keys, and Values, which are linear transformations
of the input embedding X also called tokens. The weight matrices WQ, WK , and WV , are modified during the training
process of a model.

Q = XWQ (1) K = XWK (2) V = XWV (3)

Each of the three components addresses a different aspect of the input data:

1. Queries define the characteristics the model is searching for.

2. Keys contain the context of each token in the input data.

3. Values represent the actual information of the input data.

Following the formula for a single-head attention block:

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (4)

The dot product of QKT , also known as attention score, can become large in magnitude. To mitigate the risk of the softmax
function operating in regions with small gradients, the dot product is scaled by the square root of dk, the dimensions of the
key matrix. By multiplying with V , the value of each token is adjusted, which is represented as the weighted sum of the input
tokens. The output of the attention block is the context vector[47].

Such a trio of distinct queries, keys and values is called Single-Head Attention block. A single head focuses on certain
aspects of the embedding. By parallelizing multiple attention heads through Multi-Head Attention, the network can focus on
different aspects of the embedding. Multiple layers of Multi-Head Attention blocks and multi-layer perceptrons, allow each
embedding to be influenced by its surroundings. The Multi-Head Attention blocks are the centerpiece of this design pattern
[47].

4.3. Limitations

1. Computational Complexity: Attention mechanisms exhibit a complexity of O(n2) in terms of memory usage and
computation time. This quadratic complexity arises from the need to calculate attention scores between all pairs of
tokens in the input sequence. As a result the computational cost becomes prohibitive for long sequences [47].

2. Data Requirements: Training of neural networks leveraging attention mechanisms requires vast amounts of data.
Large-scale datasets are essential to capture the important information in the data and allows the model to learn effective
attention patterns [49].

3. Scalability: Scaling neural networks to handle larger datasets demands substantial computational power. Large models
like GPT-3 with 175 billion parameters, require extensive computational infrastructure capable of parallel processing
across many devices [50].

4.4. History

The development of attention mechanisms has significantly advanced computer vision and natural language processing. Early
approches emerged in 2010 with Larochelle et al. [51], who aimed to reduce computational complexity in image processing.
They introduced a network that focuses on important image areas, avoiding the need to process the entire image. In 2014,
Bahdanau et al. [52] made a breakthrough with an attention mechanism for machine translation task. Their model used a
bidirectional recurrent neural network with an attention layer, allowing it to focus on various hidden states during decoding,
improving translation accuracy. A major milestone came in 2017 with Vaswani et al. [47]. They introduced the Transformer
architecture based on self-attention. This mechanism allows the model to consider the entire input sequence simultaneously,
enhancing efficiency and scalability in natural language processing tasks. In 2021, Dosovitsky et al. [53] introduced the
Vision Transformer (ViT) for image classification. Unlike traditional convolutional neural networks (CNNs), ViT applies
self-attention to image patches. This demonstrates the versatility of attention mechanisms beyond text processing.

4.5. Application

The attention mechanism is widely employed across various fields and domains. In natural language processing (NLP),
attention is crucial for tasks like machine translation, text summarization, and question answering [54]. Attention enables
models to focus on relevant text segments, thereby improving accuracy and fluency. For instance, in machine translation, at-
tention allows the model to align source and target language segments effectively, leading to more coherent and contextually
appropriate translations.

In computer vision, attention finds extensive application in tasks such as image classification [53], object detection [55],
and action recognition [56]. Attention models for computer vision tasks focus on key regions and frames, enhancing perfor-
mance by highlighting the most critical parts of an image or sequence. This selective focus helps in identifying objects with
higher precision and understanding complex scenes more effectively.

Beyond NLP and computer vision, attention mechanisms are applied in various fields including speech processing, rec-
ommender systems, bioinformatics, and finance. These applications enhance performance by focusing on crucial features,
such as audio signals in speech processing, user preferences in recommender systems, genetic sequences in bioinformatics,
and market indicators in finance [57].

5. Siamese Network

Siamese networks are a network architecture proposed to solve the task of similarity comparison. While the initial proposal
was to perform a simple distance comparison in the feature space of two inputs [58], the concept proved suitable for solving
numerous other tasks. With significant advances in recent years, Siamese networks have become a commonly used tool for
applications in computer vision and other fields where similarity is of interest.

5.1. Intent

Comparing two images based on their similarity can be quite challenging. Larger images require considerably more com-
putational resources, and depending on how fine-grained the detection of differences between the images should be, further
complexity arises. To solve this problem, Siamese networks do not compare the actual input images but the low-dimensional
feature vector of the images. Since the main idea of the feature vector is to represent the details of the images, minor differ-
ences in the actual image will only lead to small changes in the feature vector. Accordingly, the distance between two feature
vectors can be used as a metric for similarity comparison. Based on this metric, the inputs can not only be compared in pairs,
but creating a ranking between the different inputs is also possible.

5.2. Block Diagram

Figure 7: Siamese network with contrastive loss Figure 8: Siamese network with triplet loss

Figure 9: Comparison of Siamese networks with different loss functions [59]

Figure 7 represents the initially proposed structure of the Siamese network [58]. The same neural network is used for both
inputs to allow a comparison of the feature vectors. The vectors are then forwarded to a contrastive loss [60]. This loss is
defined as follows:

Lcon =
1

2
∗ (Ytruth ∗D2) +

1

2
(1− Ytruth) ∗ {max(0,M −D)}

Here, Ytruth is either 1 if the training images are similar or 0 otherwise. D is the distance between the feature vectors and
can be calculated by using the Euclidean distance for example. Furthermore, M is a new hyper-parameter which defines the
degree of discrimination [61] and thus specifies the distance beyond which the inputs should no longer be moved apart. As a
result, the loss either increases or decreases the distance of the inputs based on their similarity. During training, the weights
are shared between the two networks to update equally. Once trained, the forward pass of the network returns a distance-
based similarity, which can classify images as similar or dissimilar in combination with a predefined threshold value.

While this basic structure already provides a powerful tool for similarity comparisons, further improvements and variations
have been proposed. One commonly known variation is the triplet architecture [62]. As seen in Figure 8, this architecture
utilizes the same network three times. Correspondingly, the inputs can be utilized in the following way. One image will be
labeled as the anchor, while the other images are a neighboring, similar image and a distant, dissimilar image. This structure
allows the network to cluster different classes more easily since images are grouped and separated simultaneously. The
subsequent formula describes the corresponding triplet loss [63].

Ltri = max(D(fa(xa), fn(xn))−D(fa(xa), fd(xd)),M)

D and M are defined as in the contrastive loss and fa(xa), fn(xn) and fn(xn) are the feature vectors of the anchor, the
neighboring and the distance images, respectively.

5.3. Limitations

Since Siamese networks consist of multiple neural networks, the required computational resources increase based on the
number of networks. This is especially important for corresponding applications in which a similarity comparison should be
performed on devices with limited computational power, such as embedded systems or IoT devices. As a result, this is an
ongoing research field to allow such devices to utilize Siamese networks [64].
Another factor to consider is the longer data processing time required for Siamese networks. Since corresponding pairs must
be created and labeled for training, more work must be invested compared to conventional data sets and networks. Forming
effective training pairs can be crucial to ensure smooth training and positive results [65].
Furthermore, it is worth noting that Siamese networks do not generate a probability like other networks. Instead, the generated
output will be a distance-based similarity. This difference must be considered when using Siamese networks in classification
or similar tasks, as the class assignment must be adapted to this output format [66].

5.4. History

The original paper introducing Siamese networks was published in 1993 by J. Bromley et al. [58]. The paper was intended to
provide a tool for verifying signatures and finding forged signatures among genuine ones. At the same time, P. Baldi and Y.
Chauvin independently proposed a similar architecture for fingerprint recognition [67]. While the idea of Siamese networks
offered new ways to solve similarity tasks, the previously mentioned limitations, especially the higher computational power
required, proved challenging for further progress. Accordingly, significant progress in improving Siamese networks has only
been made in recent years. Following the introduction of FaceNet [63] and the proposal to use Siamese networks in one-
shot learning [68] in 2015, the architecture was reviewed for additional applications. Due to the limited amount of data in
many application areas, the realization that Siamese networks can be used effectively even with a very small sample size
has further strengthened interest. Further progress was made by Li et al. [69], who presented a combination of Siamese
networks with regional proposal networks. This combination enabled Siamese networks for real-time tracking applications
and resulted in further research for object tracking. He et al. [70] and Dong et al. [71] revisited established techniques like
multiple branching and the triplet loss, respectively, for their approach on object tracking. Shen et al. [72], on the other hand,
utilized the attention mechanism for this task. Other authors have tried to improve the Siamese architecture and worked on
minimizing the limitations. Chen et al. [73], for example, showed that Siamese networks learn meaningful representations
even without negative sample pairs, while Zhou et al. [74] proposed MASNet, a mutual-attention mechanism for improved
performance on change detection datasets.

5.5. Application

Siamese networks’ primary application area is similarity comparisons. Since this is a common problem, Siamese architecture
can be utilized in many tasks. A direct comparison between two images, as the initial authors proposed for signatures [58]
or face recognition like FaceNet [63], might come naturally as applications. However, utilizing the comparison in a clever
way also allows for other use cases. As described previously, object tracking [69] can be implemented by comparing the
difference between images in a time frame. Combining the Siamese architecture with other architectures can also open
new applications. S. Zagoruyko and N. Komodakis [75] used a CNN-based Siamese model to approach the correspondence
problem in computer vision. Furthermore, the underlying distance function can be used for unsupervised learning, as proven
by X. Wang and A. Gupta [76]. Their research found that even unlabeled data can be used for visual representation by ranking
the images with the triplet loss.

6. Region Proposal Networks

Region Proposal Networks (RPNs) are a type of neural network designed for generating region proposals within an image. A
region proposal usually consists of a rectangular box that defines the bounds of an object, along with a confidence score that
indicates the likelihood of the object being present in the region. RPNs pose a key role in modern object detection systems
such as Faster R-CNN [77]. They provide a significant improvement over traditional image processing algorithms that were
the norm before RPNs were introduced [78][79].

6.1. Intent

In 2015 Girshick identified region proposal generation as the main bottleneck in his proposed Fast R-CNN model [79]. These
types of image processing algorithms usually came with drawbacks such as high computational cost and low accuracy due to
the large number of region proposals. To address these issues, Ren et al. introduced a new neural network-based method in a
subsequent paper called Faster R-CNN [77].

The main purpose of the RPN is to generate region proposals more efficiently than traditional methods. These improvements
are a key element in enabling real-time object detection. The primary task of a RPN is to take an image as an input and output
a set of region proposals along with their confidence scores, called objectness scores.

6.2. Block Diagram

Most RPNs share four key concepts that make them very powerful. The first concept is the use of an anchoring mechanism.
This mechanism places rectangular boxes in the images that are refined by subsequent network layers. The second key aspect
is the ability to perform end-to-end training. This means that the network can be trained with a joint objective that aims
to improve objectness classification as well as refine the anchors to better fit the objects in the image. The third important
concept, crucial for improving performance, is sharing convolutional features with subsequent network layers, which reduces
redundant calculations. The fourth important distinction is that models using the RPN architecture are defined as two-stage
detectors. This means that object classification is done separately from region proposal generation.

Ren et al. first proposed a RPN that takes the last feature map of a pre-trained backbone network as an input and outputs a
set of region proposals along with their objectness scores (Figure 10). A sliding window over the feature map is used as an
input along with a set of predefined anchor boxes that feed into two important layers. The first layer (cls) classifies the anchor
boxes as either object or background. Another layer (reg) takes the same feature map window and outputs bounding box
refinements for each anchor box, such as the offset needed to better fit the object in the image and adjustments to its width
and height. Thus, for a feature map of size W ×H with k anchor boxes, W ×H ×K anchors are placed on the image. The
number of outputted region proposals depends on the classification score threshold, commonly around 1000 region propos-
als.1 When RPNs were first introduced in Faster R-CNN, a set of 9 distinct anchor boxes was used with 3 different scales
and 3 different aspect ratios [77].

This anchoring mechanism provides two important properties to handle many different types of objects in an image. First,
the anchors are translation invariant relative to their sliding window. This allows the network to guarantee the same region
proposal and function output for the same object regardless of its position in the image. Second, anchors can handle objects
at different scales and aspect ratios very efficiently without having to compute image pyramids or similar techniques.

To train the network, a set of pre-trained weights from a backbone network such as VGG16 [81] or ResNet [82] is used. As
mentioned before, the network is trained with a joint objective. This is achieved by using an alternative training technique.
In the original paper, the network is trained in four steps. Importantly, instead of using all proposed regions for training, a
subset of randomly sampled regions is chosen to avoid bias towards negatives. The ratio of positive to negative samples can
be up to 1:1. A sample is considered positive, if the intersection over union (IoU) is larger than a certain threshold, or larger
than that of all other samples. An anchor is considered a negative sample, if the IoU is smaller than a certain threshold. All

1This principle can be shown using a simple Python-notebook that utilizes Torchvision’s implementation of Faster R-CNN [80]. The following link leads
to an example: https://github.com/lhnrdt/faster-rcnn-demo/blob/main/faster-rcnn-demo.ipynb

https://github.com/lhnrdt/faster-rcnn-demo/blob/main/faster-rcnn-demo.ipynb

Figure 10: Block diagram of the RPN introduced in Faster R-CNN [77].

remaining anchors do not contribute to the training objective at all [77].

The joint objective is defined as:

L({pi}, {ti}) =
1

Ncls

∑
i

Lcls(pi, p
∗
i) + λ

1

Nreg

∑
i

p∗iLreg(pi, p
∗
i) (5)

Where pi is the predicted probability of anchor i being an object, p∗i is the ground truth label, ti is the predicted bounding box
regression output, p∗i is the ground truth bounding box regression output, Lcls is the log loss function, Lreg is the smooth L1
loss function, Ncls and Nreg are normalizing factors, and λ is a hyperparameter that balances the two losses. An important
property to notice, is that the regression loss is only activated for positive samples (p∗iLreg). [77]

One important aspect of the RPN is that it shares convolutional features across many layers of the network. This applies not
only to Faster R-CNN architectures but is also a key concept for most RPNs in general. This is done to reduce redundant cal-
culations and improve performance. The shared features are used for both the RPN (to refine anchors and predict objectness
scores) and the subsequent object classification network [77].

6.3. Limitations

Eventhough RPNs usually excel in terms of accuracy and precision, they come with some limitations. If we focus our atten-
tion at visual tasks alone, the main limitation is the computational cost. This usually results in rather slow inference times.
This is due to the fact that the network has to generate a large number of region proposals and then classify them.

Another drawback, if we consider RPNs as a pattern outside of the computer vision domain, is that they are not very versa-
tile. RPNs are designed for spatial regions and would require some substantial modification to be applied to sequential (text),
temporal (video), or other types of data. For tasks like tracking an object in a video with a RPN in its pure form, regions
in subsequent frames are purely generated based on the current frame and don’t take into account the temporal context. Al-
though with some modifications and a siamese network architecture RPNs can be applied to tracking tasks. [83]

As with most neural networks, the results are highly dependent on the quality and abundance of training data. This is espe-
cially true for RPNs as they usually heavily rely on a pre-trained backbone network that is shared throughout the network.

So the proposed regions are only as good as the features extracted by the backbone network.

The powerful anchor mechanism only works well, if the set of predefined anchors is well chosen. In the original proposal of
RPNs these were chosen by trial and error. A poor choice of these anchors can lead to a poor performance of the network.
[84] Typically, the anchors are placed at each spatial location on the feature map. This usually results in a large number
of negative anchors that don’t contain any objects. This can lead to a negative bias in the training data, which needs to be
addressed by sampling a subset of the anchors for training and adds to the computational cost of the network.

6.4. History

With Girshick’s introduction of Fast R-CNN [79] in 2015, the need for a proper neural network based method was born and
introduced with the already discussed Faster R-CNN [77] in 2017. Quickly after, in 2016 Lin et al. identified that adding
more anchors would not increase the quality of the proposals. Instead, they proposed an architecture that made use of the
pyramid of features extracted by the backbone network. This allowed the network to make use of features at different scales
and aspect ratios more efficiently. [84]

Around this time, although not directly related to classical RPNs, Redmon et al. introduced the YOLO (You Only Look
Once) architecture. This network was designed to make object detection in real time possible. Instead of using a two-stage
detector, YOLO used a single neural network to predict the bounding boxes and the class probabilities directly from the full
image. This was a significant improvement in terms of speed compared to the two-stage detectors but still lacked behind in
terms of precision. [85]

As some applications benefit from pixel wise segmentation, He et al. modified the RPN architecture by adding a mask gen-
eration branch to the network. This allowed to extract information like human pose estimations or pixel wise segmentation
without adding large computational overhead. [86] Another contribution was Polygon R-NN by Castrejon et al. in 2017. This
network tried to go beyond simple box predictions. Instead modified the architecture in such a way that it could sequentially
output a set of vertices of a polygon that fits an object in the image. This was then used to make dataset annotations more
efficient. [87] As previously mentioned in the limitations, until now, anchors were usually sampled uniformly across the
image. Wang et al. addressed this issue by proposing a method that first generates a map of propabilities for a spatial location
to contain the center of an object. These maps are then employed to sample more anchors in regions that are more likely to
contain objects. This method was shown to improve the performance of the network. [88]

Around this time, single-stage detectors made significant improvements in terms of precision with contributions like Corner-
Net [89] and CenterNet [90] that focused on predicting the corners or centers of objects in the image.

With Cascade RPN [91] Vu et al. proposed a method that uses a cascade of RPNs to improve the quality of the region
proposals. This was done by using the output of the previous RPN to refine the anchors for the next RPN. This method as of
now is considered state-of-the-art in terms of region proposal based two-stage object detection. Later contributions included
things like orienting the anchors to improve IoU performance. This was done by Cheng et al. in 2022 to be applied to aerial
images. [92]

6.5. Application

Today RPNs can be applied to many different fields due to many contributions over the years. Eventhough two-stage detec-
tors are not as fast as single-stage detectors, they are still widely employed for tasks that require precision and offer complex
scenarios to detect. Tasks like autonomous driving are an interesting topic since they require precision but at the same time
need to be fast. In a comparision by Carranza-Garcı́a et al. that evaluates detection performance for autonomous driving
tasks, Faster R-CNN networks were identified to acheive the best speed/accuracy tradeoff as well as being more reliable in
the minority class detection. [93] Despite the difficulties of transferring RPNs to different domains, some interesting appli-
cations beyond 2D-image detection have been proposed. For example, Nabati and Qi proposed a method to detect objects in
Radar and Lidar data. [94]

Another interesting application, where two-stage detectors are used, is in the field of medical imaging. For example, in a
paper from 2020 [95] early signs of lung cancer could be detected with a two-stage approach. Liu et al. employed a RPN to
successfully detect punctate white matter lesions in brain MRI images of preterm infants. [96]. In a paper from 2021 Ma and
Luo managed to achieve about 90% accuracy in detecting bone fractures on X-ray images using a Faster R-CNN network.
[97]

RPNs also play a key role in the field of intelligent surveillance systems. In a recent paper from 2024 Ding et al. proposed a
method to detect specialty vehicles in airport surveillance systems. [98] Because of the irregular shapes of these vehicles, the
need for high precision and pixel wise masking from Mask R-CNN [86] was solved. A paper from 2022 proposed a method
to detect suspicious objects in video surveillance systems to prevent terrorist attacks. [99]

References

[1] F. Emmert-Streib et al., “An introductory review of deep learning for prediction models with big data,” Frontiers in
Artificial Intelligence, vol. 3, p. 4, 2020.

[2] Y. LeCun et al., “Generalization and network design strategies,” Connectionism in perspective, vol. 19, no. 143-155,
p. 18, 1989.

[3] D. Bhatt et al., “Cnn variants for computer vision: History, architecture, application, challenges and future scope,”
Electronics, vol. 10, no. 20, p. 2470, 2021.

[4] L. Lu et al., “Integrating local cnn and global cnn for script identification in natural scene images,” IEEE Access, vol. 7,
pp. 52 669–52 679, 2019.

[5] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,” arXiv preprint arXiv:1511.07122,
2015.

[6] D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” The Journal of
physiology, vol. 195, no. 1, pp. 215–243, 1968.

[7] K. Fukushima, “Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaf-
fected by shift in position,” Biological cybernetics, vol. 36, no. 4, pp. 193–202, 1980.

[8] Y. LeCun et al., “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[9] A. Krizhevsky et al., “Imagenet classification with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, 2012.

[10] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[11] K. He et al., Deep residual learning for image recognition, 2015. arXiv: 1512.03385 [cs.CV]. [Online]. Avail-
able: https://arxiv.org/abs/1512.03385.

[12] C. Szegedy et al., Going deeper with convolutions, 2014. arXiv: 1409 . 4842 [cs.CV]. [Online]. Available:
https://arxiv.org/abs/1409.4842.

[13] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural networks,” in International con-
ference on machine learning, PMLR, 2019, pp. 6105–6114.

[14] J. Wang et al., “Deep high-resolution representation learning for visual recognition,” IEEE transactions on pattern
analysis and machine intelligence, vol. 43, no. 10, pp. 3349–3364, 2020.

[15] Z. Dai et al., “Coatnet: Marrying convolution and attention for all data sizes,” Advances in neural information process-
ing systems, vol. 34, pp. 3965–3977, 2021.

[16] Z. Liu et al., “A convnet for the 2020s,” in Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2022, pp. 11 976–11 986.

[17] O. Ronneberger et al., “U-net: Convolutional networks for biomedical image segmentation,” in Medical image com-
puting and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October
5-9, 2015, proceedings, part III 18, Springer, 2015, pp. 234–241.

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.4842

[18] W. L. Perera, Objects recognition by cnn for the vision of smart car navigation, Oct. 2019. DOI: 10.13140/RG.2.
2.14857.60005.

[19] A. v. d. Oord et al., “Wavenet: A generative model for raw audio,” arXiv preprint arXiv:1609.03499, 2016.

[20] F.-A. Croitoru et al., “Diffusion models in vision: A survey,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 45, no. 9, pp. 10 850–10 869, Sep. 2023, ISSN: 1939-3539. DOI: 10.1109/tpami.2023.
3261988. [Online]. Available: http://dx.doi.org/10.1109/TPAMI.2023.3261988.

[21] A. Nichol and P. Dhariwal, Improved denoising diffusion probabilistic models, 2021. arXiv: 2102.09672 [cs.LG].
[Online]. Available: https://arxiv.org/abs/2102.09672.

[22] A. Amini and A. Amini, Deep learning limitations and new frontiers, Jan. 2023. [Online]. Available: http://
introtodeeplearning.com/2023/slides/6S191_MIT_DeepLearning_L7.pdf.

[23] W. Nie et al., Diffusion models for adversarial purification, 2022. arXiv: 2205.07460 [cs.LG]. [Online]. Avail-
able: https://arxiv.org/abs/2205.07460.

[24] J. Ho et al., Denoising diffusion probabilistic models, 2020. arXiv: 2006.11239 [cs.LG]. [Online]. Available:
https://arxiv.org/abs/2006.11239.

[25] A. Jain, Diffusion, Apr. 2024. [Online]. Available: https://docs.google.com/presentation/d/
1bSqPL2hJEj_atOT1vLFEJipnOQbOiow70wjE3Pz2AO4/edit.

[26] P. Dhariwal and A. Nichol, Diffusion models beat gans on image synthesis, 2021. arXiv: 2105.05233 [cs.LG].
[Online]. Available: https://arxiv.org/abs/2105.05233.

[27] R. Rombach et al., High-resolution image synthesis with latent diffusion models, 2022. arXiv: 2112.10752 [cs.CV].
[Online]. Available: https://arxiv.org/abs/2112.10752.

[28] A. Amini and A. Amini, Deep generative modeling, Jan. 2023. [Online]. Available: http://introtodeeplearning.
com/2023/slides/6S191_MIT_DeepLearning_L4.pdf.

[29] J. Sohl-Dickstein et al., Deep unsupervised learning using nonequilibrium thermodynamics, 2015. arXiv: 1503.
03585 [cs.LG]. [Online]. Available: https://arxiv.org/abs/1503.03585.

[30] A. Ramesh et al., Hierarchical text-conditional image generation with clip latents, 2022. arXiv: 2204 . 06125
[cs.CV]. [Online]. Available: https://arxiv.org/abs/2204.06125.

[31] C. Saharia et al., Photorealistic text-to-image diffusion models with deep language understanding, 2022. arXiv: 2205.
11487 [cs.CV]. [Online]. Available: https://arxiv.org/abs/2205.11487.

[32] Midjourney, Midjourney. [Online]. Available: https://www.midjourney.com/home.

[33] J. Ho et al., Imagen video: High definition video generation with diffusion models, 2022. arXiv: 2210.02303
[cs.CV]. [Online]. Available: https://arxiv.org/abs/2210.02303.

[34] OpenAI, Creating video from text. [Online]. Available: https://openai.com/index/sora.

[35] P. Baldi, “Autoencoders, unsupervised learning, and deep architectures,” in Proceedings of ICML workshop on unsu-
pervised and transfer learning, JMLR Workshop and Conference Proceedings, 2012, pp. 37–49.

[36] V. Badrinarayanan et al., “Segnet: A deep convolutional encoder-decoder architecture for image segmentation,” IEEE
transactions on pattern analysis and machine intelligence, vol. 39, no. 12, pp. 2481–2495, 2017.

[37] M. Tschannen et al., “Recent advances in autoencoder-based representation learning,” arXiv preprint arXiv:1812.05069,
2018.

[38] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.

[39] C. Doersch, “Tutorial on variational autoencoders,” arXiv preprint arXiv:1606.05908, 2016.

[40] Z. Pan et al., “Recent progress on generative adversarial networks (gans): A survey,” IEEE access, vol. 7, pp. 36 322–
36 333, 2019.

[41] S. Bond-Taylor et al., “Deep generative modelling: A comparative review of vaes, gans, normalizing flows, energy-
based and autoregressive models,” IEEE transactions on pattern analysis and machine intelligence, vol. 44, no. 11,
pp. 7327–7347, 2021.

https://doi.org/10.13140/RG.2.2.14857.60005
https://doi.org/10.13140/RG.2.2.14857.60005
https://doi.org/10.1109/tpami.2023.3261988
https://doi.org/10.1109/tpami.2023.3261988
http://dx.doi.org/10.1109/TPAMI.2023.3261988
https://arxiv.org/abs/2102.09672
https://arxiv.org/abs/2102.09672
http://introtodeeplearning.com/2023/slides/6S191_MIT_DeepLearning_L7.pdf
http://introtodeeplearning.com/2023/slides/6S191_MIT_DeepLearning_L7.pdf
https://arxiv.org/abs/2205.07460
https://arxiv.org/abs/2205.07460
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2006.11239
https://docs.google.com/presentation/d/1bSqPL2hJEj_atOT1vLFEJipnOQbOiow70wjE3Pz2AO4/edit
https://docs.google.com/presentation/d/1bSqPL2hJEj_atOT1vLFEJipnOQbOiow70wjE3Pz2AO4/edit
https://arxiv.org/abs/2105.05233
https://arxiv.org/abs/2105.05233
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
http://introtodeeplearning.com/2023/slides/6S191_MIT_DeepLearning_L4.pdf
http://introtodeeplearning.com/2023/slides/6S191_MIT_DeepLearning_L4.pdf
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2205.11487
https://arxiv.org/abs/2205.11487
https://arxiv.org/abs/2205.11487
https://www.midjourney.com/home
https://arxiv.org/abs/2210.02303
https://arxiv.org/abs/2210.02303
https://arxiv.org/abs/2210.02303
https://openai.com/index/sora

[42] D. E. Rumelhart et al., “Learning representations by back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536,
1986.

[43] P. Vincent et al., “Extracting and composing robust features with denoising autoencoders,” in Proceedings of the 25th
international conference on Machine learning, 2008, pp. 1096–1103.

[44] I. Tolstikhin et al., “Wasserstein auto-encoders,” arXiv preprint arXiv:1711.01558, 2017.

[45] J. Zhao et al., “A combination method of stacked autoencoder and 3d deep residual network for hyperspectral image
classification,” International Journal of Applied Earth Observation and Geoinformation, vol. 102, p. 102 459, 2021.

[46] S. Röhrl et al., “Autoencoder features for differentiation of leukocytes based on digital holographic microscopy (dhm),”
in Computer Aided Systems Theory–EUROCAST 2019: 17th International Conference, Las Palmas de Gran Canaria,
Spain, February 17–22, 2019, Revised Selected Papers, Part II 17, Springer, 2020, pp. 281–288.

[47] A. Vaswani et al., Attention is all you need, Jun. 2017. [Online]. Available: https://arxiv.org/pdf/1706.
03762 (visited on 06/15/2024).

[48] A. De et al., Attention, please! a survey of neural attention models in deep learning a preprint, 2021. [Online]. Avail-
able: https://arxiv.org/pdf/2103.16775 (visited on 07/07/2024).

[49] J. Devlin et al., Bert: Pre-training of deep bidirectional transformers for language understanding, May 2019. [Online].
Available: https://arxiv.org/pdf/1810.04805 (visited on 07/06/2024).

[50] T. Brown et al., Language models are few-shot learners, Jul. 2020. [Online]. Available: https://arxiv.org/
pdf/2005.14165 (visited on 07/06/2024).

[51] H. Larochelle and G. E. Hinton, Learning to combine foveal glimpses with a third-order boltzmann machine, Neural
Information Processing Systems, 2010. [Online]. Available: https://proceedings.neurips.cc/paper_
files/paper/2010/hash/677e09724f0e2df9b6c000b75b5da10d-Abstract.html (visited on
06/13/2024).

[52] D. Bahdanau et al., Neural machine translation by jointly learning to align and translate, arXiv.org, 2014. [Online].
Available: https://arxiv.org/abs/1409.0473 (visited on 06/22/2024).

[53] A. Dosovitskiy et al., An image is worth 16x16 words: Transformers for image recognition at scale, Jun. 2021. [On-
line]. Available: https://arxiv.org/pdf/2010.11929 (visited on 06/22/2024).

[54] A. Galassi et al., “Attention in natural language processing,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 32, pp. 1–18, 2020. DOI: 10.1109/tnnls.2020.3019893.

[55] N. Carion et al., End-to-end object detection with transformers, Jun. 2024. [Online]. Available: https://arxiv.
org/pdf/2005.12872.

[56] R. Girdhar et al., Video action transformer network, Dec. 2018. [Online]. Available: https://arxiv.org/pdf/
1812.02707 (visited on 06/23/2024).

[57] G. Brauwers and F. Frasincar, “A general survey on attention mechanisms in deep learning,” IEEE Transactions on
Knowledge and Data Engineering, pp. 1–1, 2021. DOI: 10.1109/tkde.2021.3126456.

[58] J. Bromley et al., “Signature verification using a ”siamese” time delay neural network,” in Advances in Neural Infor-
mation Processing Systems, J. Cowan et al., Eds., vol. 6, Morgan-Kaufmann, 1993. [Online]. Available: https://
proceedings.neurips.cc/paper_files/paper/1993/file/288cc0ff022877bd3df94bc9360b9c5d-
Paper.pdf.

[59] B. Ghojogh et al., “Fisher discriminant triplet and contrastive losses for training siamese networks,” in 2020 Inter-
national Joint Conference on Neural Networks (IJCNN), 2020, pp. 1–7. DOI: 10.1109/IJCNN48605.2020.
9206833.

[60] R. Hadsell et al., “Dimensionality reduction by learning an invariant mapping,” in 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 2, 2006, pp. 1735–1742. DOI: 10.1109/
CVPR.2006.100.

[61] Y. Li et al., “A survey on siamese network: Methodologies, applications, and opportunities,” IEEE Transactions on
Artificial Intelligence, vol. 3, no. 6, pp. 994–1014, 2022. DOI: 10.1109/TAI.2022.3207112.

https://arxiv.org/pdf/1706.03762
https://arxiv.org/pdf/1706.03762
https://arxiv.org/pdf/2103.16775
https://arxiv.org/pdf/1810.04805
https://arxiv.org/pdf/2005.14165
https://arxiv.org/pdf/2005.14165
https://proceedings.neurips.cc/paper_files/paper/2010/hash/677e09724f0e2df9b6c000b75b5da10d-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2010/hash/677e09724f0e2df9b6c000b75b5da10d-Abstract.html
https://arxiv.org/abs/1409.0473
https://arxiv.org/pdf/2010.11929
https://doi.org/10.1109/tnnls.2020.3019893
https://arxiv.org/pdf/2005.12872
https://arxiv.org/pdf/2005.12872
https://arxiv.org/pdf/1812.02707
https://arxiv.org/pdf/1812.02707
https://doi.org/10.1109/tkde.2021.3126456
https://proceedings.neurips.cc/paper_files/paper/1993/file/288cc0ff022877bd3df94bc9360b9c5d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1993/file/288cc0ff022877bd3df94bc9360b9c5d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1993/file/288cc0ff022877bd3df94bc9360b9c5d-Paper.pdf
https://doi.org/10.1109/IJCNN48605.2020.9206833
https://doi.org/10.1109/IJCNN48605.2020.9206833
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/TAI.2022.3207112

[62] E. Hoffer and N. Ailon, Deep metric learning using triplet network, 2018. arXiv: 1412.6622 [cs.LG]. [Online].
Available: https://arxiv.org/abs/1412.6622.

[63] F. Schroff et al., “Facenet: A unified embedding for face recognition and clustering,” CoRR, vol. abs/1503.03832,
2015. arXiv: 1503.03832. [Online]. Available: http://arxiv.org/abs/1503.03832.

[64] B. Rı́os et al., “Deep learning for face recognition on mobile devices,” IET Biometrics, vol. 9, Feb. 2020. DOI: 10.
1049/iet-bmt.2019.0093.

[65] H. O. Song et al., Deep metric learning via lifted structured feature embedding, 2015. arXiv: 1511.06452 [cs.CV].
[Online]. Available: https://arxiv.org/abs/1511.06452.

[66] A. Fedele et al., “Explaining siamese networks in few-shot learning,” Machine Learning, pp. 1–38, Apr. 2024. DOI:
10.1007/s10994-024-06529-8.

[67] P. Baldi and Y. Chauvin, “Neural networks for fingerprint recognition,” Neural Computation, vol. 5, no. 3, pp. 402–
418, May 1993, ISSN: 0899-7667. DOI: 10.1162/neco.1993.5.3.402. eprint: https://direct.
mit.edu/neco/article-pdf/5/3/402/812570/neco.1993.5.3.402.pdf. [Online]. Available:
https://doi.org/10.1162/neco.1993.5.3.402.

[68] G. Koch et al., “Siamese neural networks for one-shot image recognition,” in ICML deep learning workshop, Lille,
vol. 2, 2015.

[69] B. Li et al., “High performance visual tracking with siamese region proposal network,” in 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2018, pp. 8971–8980. DOI: 10.1109/CVPR.2018.00935.

[70] A. He et al., “A twofold siamese network for real-time object tracking,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Jun. 2018.

[71] X. Dong and J. Shen, “Triplet loss in siamese network for object tracking,” in Proceedings of the European Conference
on Computer Vision (ECCV), Sep. 2018.

[72] J. Shen et al., “Visual object tracking by hierarchical attention siamese network,” IEEE Transactions on Cybernetics,
vol. 50, no. 7, pp. 3068–3080, 2020. DOI: 10.1109/TCYB.2019.2936503.

[73] X. Chen and K. He, Exploring simple siamese representation learning, 2020. arXiv: 2011.10566 [cs.CV]. [On-
line]. Available: https://arxiv.org/abs/2011.10566.

[74] H. Zhou et al., Masnet:improve performance of siamese networks with mutual-attention for remote sensing change
detection tasks, 2022. arXiv: 2206.02331 [cs.CV]. [Online]. Available: https://arxiv.org/abs/2206.
02331.

[75] S. Zagoruyko and N. Komodakis, Learning to compare image patches via convolutional neural networks, 2015. arXiv:
1504.03641 [cs.CV]. [Online]. Available: https://arxiv.org/abs/1504.03641.

[76] X. Wang and A. Gupta, Unsupervised learning of visual representations using videos, 2015. arXiv: 1505.00687
[cs.CV]. [Online]. Available: https://arxiv.org/abs/1505.00687.

[77] S. Ren et al., “Faster r-cnn: Towards real-time object detection with region proposal networks,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137–1149, Jun. 2017, ISSN: 2160-9292. DOI: 10.
1109/tpami.2016.2577031.

[78] J. R. R. Uijlings et al., “Selective search for object recognition,” International Journal of Computer Vision, vol. 104,
no. 2, pp. 154–171, Apr. 2013, ISSN: 1573-1405. DOI: 10.1007/s11263-013-0620-5.

[79] R. Girshick, Fast r-cnn, 2015. DOI: 10.48550/ARXIV.1504.08083.

[80] Torch Contributors, Faster r-cnn - torchvision main documentation, pytorch.org. [Online]. Available: https://
pytorch.org/vision/main/models/faster_rcnn.html (visited on 07/15/2024).

[81] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” Sep. 2014.
DOI: 10.48550/ARXIV.1409.1556. arXiv: 1409.1556 [cs.CV].

[82] K. He et al., “Deep residual learning for image recognition,” Dec. 2015. DOI: 10.48550/ARXIV.1512.03385.
arXiv: 1512.03385 [cs.CV].

[83] B. Li et al., “High performance visual tracking with siamese region proposal network,” in 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, IEEE, Jun. 2018. DOI: 10.1109/cvpr.2018.00935.

https://arxiv.org/abs/1412.6622
https://arxiv.org/abs/1412.6622
https://arxiv.org/abs/1503.03832
http://arxiv.org/abs/1503.03832
https://doi.org/10.1049/iet-bmt.2019.0093
https://doi.org/10.1049/iet-bmt.2019.0093
https://arxiv.org/abs/1511.06452
https://arxiv.org/abs/1511.06452
https://doi.org/10.1007/s10994-024-06529-8
https://doi.org/10.1162/neco.1993.5.3.402
https://direct.mit.edu/neco/article-pdf/5/3/402/812570/neco.1993.5.3.402.pdf
https://direct.mit.edu/neco/article-pdf/5/3/402/812570/neco.1993.5.3.402.pdf
https://doi.org/10.1162/neco.1993.5.3.402
https://doi.org/10.1109/CVPR.2018.00935
https://doi.org/10.1109/TCYB.2019.2936503
https://arxiv.org/abs/2011.10566
https://arxiv.org/abs/2011.10566
https://arxiv.org/abs/2206.02331
https://arxiv.org/abs/2206.02331
https://arxiv.org/abs/2206.02331
https://arxiv.org/abs/1504.03641
https://arxiv.org/abs/1504.03641
https://arxiv.org/abs/1505.00687
https://arxiv.org/abs/1505.00687
https://arxiv.org/abs/1505.00687
https://doi.org/10.1109/tpami.2016.2577031
https://doi.org/10.1109/tpami.2016.2577031
https://doi.org/10.1007/s11263-013-0620-5
https://doi.org/10.48550/ARXIV.1504.08083
https://pytorch.org/vision/main/models/faster_rcnn.html
https://pytorch.org/vision/main/models/faster_rcnn.html
https://doi.org/10.48550/ARXIV.1409.1556
https://arxiv.org/abs/1409.1556
https://doi.org/10.48550/ARXIV.1512.03385
https://arxiv.org/abs/1512.03385
https://doi.org/10.1109/cvpr.2018.00935

[84] T.-Y. Lin et al., Feature pyramid networks for object detection, 2016. DOI: 10.48550/ARXIV.1612.03144.

[85] J. Redmon et al., You only look once: Unified, real-time object detection, 2015. DOI: 10.48550/ARXIV.1506.
02640.

[86] K. He et al., Mask r-cnn, 2017. DOI: 10.48550/ARXIV.1703.06870.

[87] L. Castrejon et al., “Annotating object instances with a polygon-rnn,” 2017. DOI: 10.48550/ARXIV.1704.
05548.

[88] J. Wang et al., Region proposal by guided anchoring, 2019. DOI: 10.48550/ARXIV.1901.03278.

[89] H. Law and J. Deng, Cornernet: Detecting objects as paired keypoints, 2018. DOI: 10.48550/ARXIV.1808.
01244.

[90] K. Duan et al., Centernet: Keypoint triplets for object detection, 2019. DOI: 10.48550/ARXIV.1904.08189.

[91] T. Vu et al., Cascade rpn: Delving into high-quality region proposal network with adaptive convolution, 2019. DOI:
10.48550/ARXIV.1909.06720.

[92] G. Cheng et al., “Anchor-free oriented proposal generator for object detection,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 60, pp. 1–11, 2022, ISSN: 1558-0644. DOI: 10.1109/tgrs.2022.3183022.

[93] M. Carranza-Garcı́a et al., “On the performance of one-stage and two-stage object detectors in autonomous vehicles us-
ing camera data,” Remote Sensing, vol. 13, no. 1, p. 89, Dec. 2020, ISSN: 2072-4292. DOI: 10.3390/rs13010089.

[94] R. Nabati and H. Qi, “Rrpn: Radar region proposal network for object detection in autonomous vehicles,” in 2019 IEEE
International Conference on Image Processing (ICIP), IEEE, Sep. 2019. DOI: 10.1109/icip.2019.8803392.

[95] H. Cao et al., “A two-stage convolutional neural networks for lung nodule detection,” IEEE Journal of Biomedical and
Health Informatics, pp. 1–1, 2020, ISSN: 2168-2208. DOI: 10.1109/jbhi.2019.2963720.

[96] Y. Liu et al., “Refined segmentation r-cnn: A two-stage convolutional neural network for punctate white matter lesion
segmentation in preterm infants,” in Medical Image Computing and Computer Assisted Intervention – MICCAI 2019.
Springer International Publishing, 2019, pp. 193–201, ISBN: 9783030322489. DOI: 10.1007/978- 3- 030-
32248-9_22.

[97] Y. Ma and Y. Luo, “Bone fracture detection through the two-stage system of crack-sensitive convolutional neural
network,” Informatics in Medicine Unlocked, vol. 22, p. 100 452, 2021, ISSN: 2352-9148. DOI: 10.1016/j.imu.
2020.100452.

[98] M. Ding et al., “Two-stage framework for specialty vehicles detection and classification: Toward intelligent visual
surveillance of airport surface,” IEEE Transactions on Aerospace and Electronic Systems, vol. 60, no. 2, pp. 1912–
1923, Apr. 2024, ISSN: 2371-9877. DOI: 10.1109/taes.2023.3342797.

[99] Z. Wen et al., “Ai-based w-band suspicious object detection system for moving persons: Two-stage walkthrough
configuration and recognition optimization,” Wireless Communications and Mobile Computing, vol. 2022, K. Laksh-
manna, Ed., pp. 1–16, Jun. 2022, ISSN: 1530-8669. DOI: 10.1155/2022/3690403.

https://doi.org/10.48550/ARXIV.1612.03144
https://doi.org/10.48550/ARXIV.1506.02640
https://doi.org/10.48550/ARXIV.1506.02640
https://doi.org/10.48550/ARXIV.1703.06870
https://doi.org/10.48550/ARXIV.1704.05548
https://doi.org/10.48550/ARXIV.1704.05548
https://doi.org/10.48550/ARXIV.1901.03278
https://doi.org/10.48550/ARXIV.1808.01244
https://doi.org/10.48550/ARXIV.1808.01244
https://doi.org/10.48550/ARXIV.1904.08189
https://doi.org/10.48550/ARXIV.1909.06720
https://doi.org/10.1109/tgrs.2022.3183022
https://doi.org/10.3390/rs13010089
https://doi.org/10.1109/icip.2019.8803392
https://doi.org/10.1109/jbhi.2019.2963720
https://doi.org/10.1007/978-3-030-32248-9_22
https://doi.org/10.1007/978-3-030-32248-9_22
https://doi.org/10.1016/j.imu.2020.100452
https://doi.org/10.1016/j.imu.2020.100452
https://doi.org/10.1109/taes.2023.3342797
https://doi.org/10.1155/2022/3690403

	. Convolutional Neural Network
	. Intent
	. Block Diagram
	. Limitations
	. History
	. Application

	. Diffusion Models
	. Intent
	. Block Diagram
	. Limitations
	. History
	. Application

	. Autoencoder
	. Intent
	. Block Diagram
	. Limitations
	. History
	. Application

	. Attention
	. Intent
	. Block Diagram
	. Limitations
	. History
	. Application

	. Siamese Network
	. Intent
	. Block Diagram
	. Limitations
	. History
	. Application

	. Region Proposal Networks
	. Intent
	. Block Diagram
	. Limitations
	. History
	. Application

