

Message-passing neural PDE solvers

Richard Strunk, 7. May 2024

Disclaimer

• I'm not an expert on differential equations

Disclaimer

- I'm not an expert on differential equations
- I could not independently verify runtime & MSE claims

Disclaimer

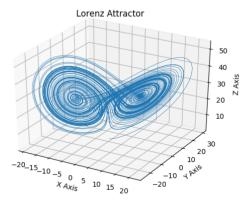
- I'm not an expert on differential equations
- I could not independently verify runtime & MSE claims
- Their implementation differs from the paper in a lot of details

Differential equations...

ТШ

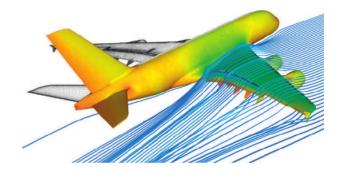
..actually important?

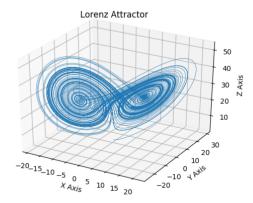
Fluids, waves, wind



..actually important?

Fluids, waves, wind

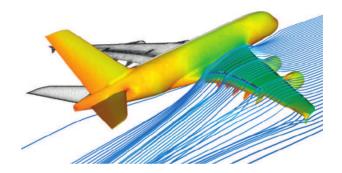


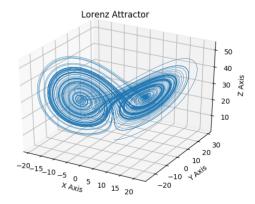


ЛЛ

..actually important?

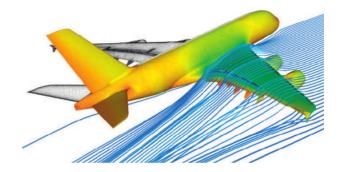
Fluids, waves, wind Thermal conduction

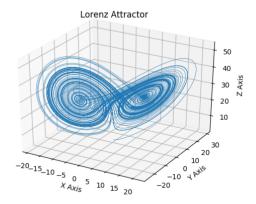




..actually important?

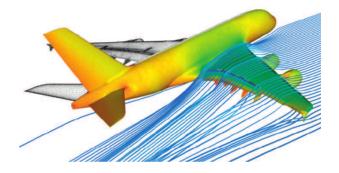
Fluids, waves, wind Thermal conduction

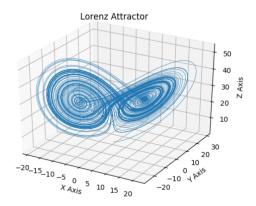




..actually important?

Fluids, waves, wind Thermal conduction Movements of stars

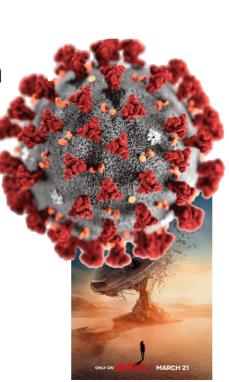


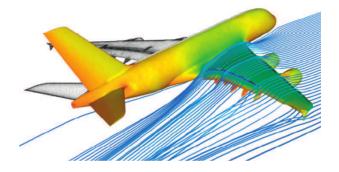


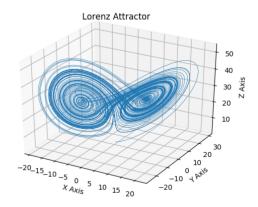
ТШП

..actually important?

Fluids, waves, air Thermal conduction Movements of stars Epidemiology..







Learning entry

• Absolutely not this paper

Learning entry

- Absolutely not this paper
- https://github.com/barbagroup/CFDPython (→ /w Python Code)
- 3B1B, Differential Equations (\rightarrow High quality)
- "PDE Strauss" (→ Free on Google Books)

Partial differential equations

$$x = [x_1, x_2, x_3, \dots, x_n]^T \in \mathbb{X}$$

$$\partial_t u = F(t, x, u, \partial_x u, \partial_{xx} u, \dots) \quad (t, x) \in [0, T] \times \mathbb{X}$$

$$B[u](t, x) = 0 \text{ for } (t, x) \in [0, T] \times \partial \mathbb{X}$$

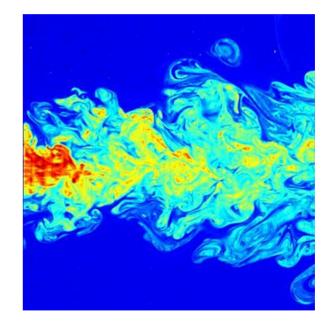
$$u(0, x) = u^0(x)$$

Conservation form

$$\partial_t \mathbf{u} + \nabla \cdot \mathbf{J}(\mathbf{u}) = 0$$

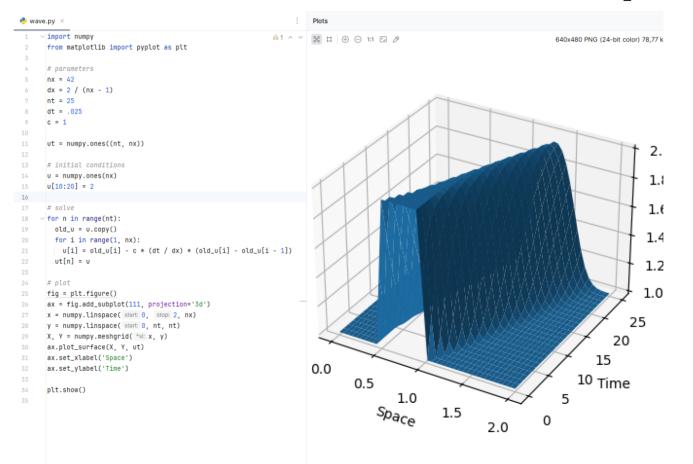
$$rac{d\xi}{dt} + oldsymbol{
abla} \cdot {f f}(\xi) = 0$$

$$rac{d}{dt}\int_V \xi\, dV = -\oint_{\partial V} {f f}(\xi)\cdot {oldsymbol
u}\, dS$$



πп

Finite difference example



Proudly stolen from CFDPython

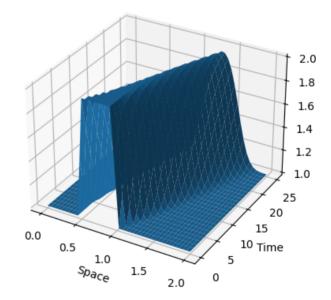
Finite difference example

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0$$

$$\frac{\partial u}{\partial x} \approx \frac{u(x+\delta x) - u(x)}{\delta x}$$

$$\frac{u_i^{n+1} - u_i^n}{\delta t} + c \frac{u_i^n - u_{i-1}^n}{\delta x} = 0$$

$$u_i^{n+1} = u_i^n - c\frac{\delta t}{\delta x}(u_i^n - u_{i-1}^n)$$

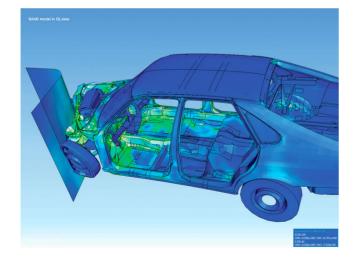


Numerical solvers

- Method of lines (MOL)
- Finite element method (FEM)
- PS
- etc.

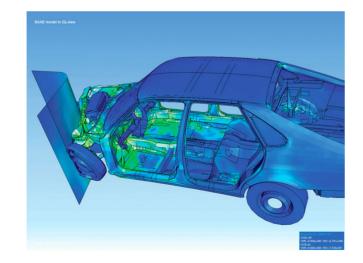
Numerical solvers

- Method of lines (MOL)
- Finite element method (FEM)
- PS
- etc.



Numerical solvers

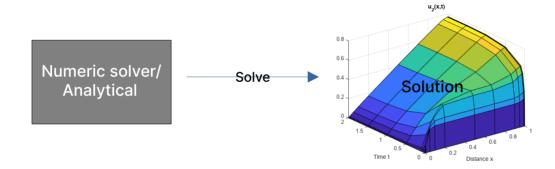
- Method of lines (MOL)
- Finite element method (FEM)
- PS
- etc.

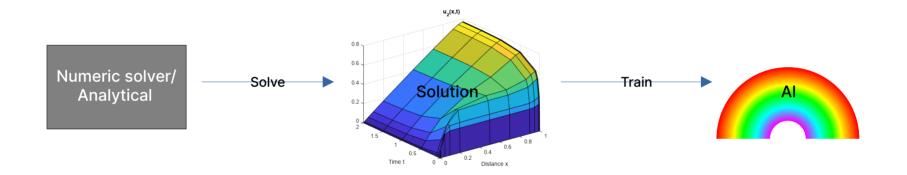


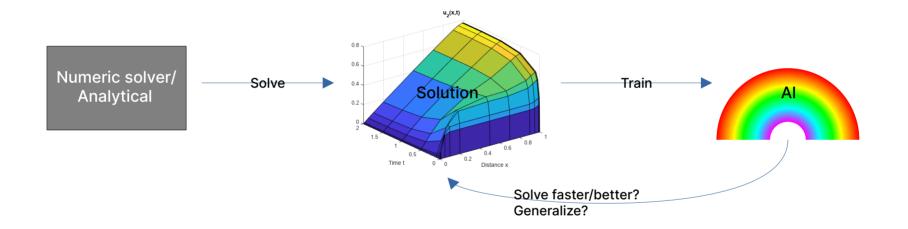
each with their different

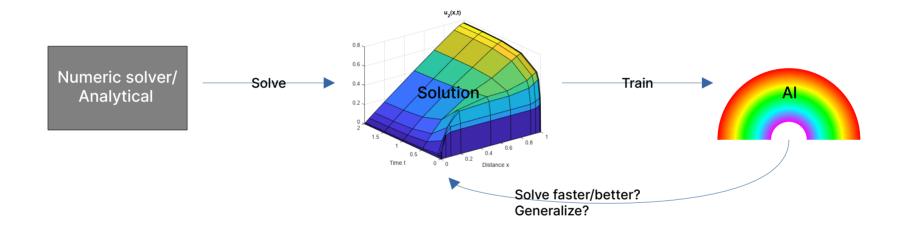
- \rightarrow Compute times
- \rightarrow Accuracies / Errors
- → Sensitivities
- \rightarrow Generalization abilities

Numeric solver/ Analytical





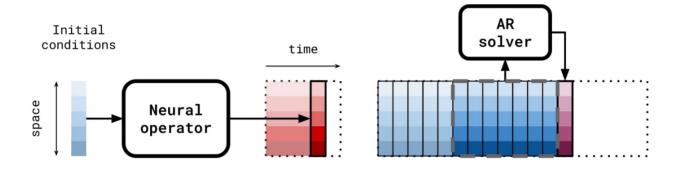




Spoiler: This works quite good!

٦Л

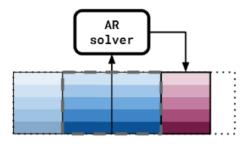
The options



Neural operator Mapping from initial conditions to output Autoregressive model Mapping between temporally consecutive time steps

$$\mathcal{M}(t, \mathbf{u}^0) = \mathbf{u}(t)$$
 $\mathbf{u}(t + \Delta t) = \mathcal{A}(\Delta t, \mathbf{u}(t))$

Temporal bundling

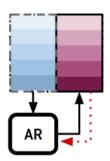


Temporal bundling Fewer calls to solver reduces error propagation speed

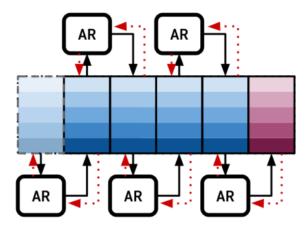
```
class MP_PDE_Solver(torch.nn.Module):
    """
    MP-PDE solver class
    """
    def __init__(
        self,
        pde: PDE,
        time_window: int = 25,
        hidden_features: int = 128,
        hidden_layer: int = 6,
        eq_variables: dict = {}
    ):
```

πш

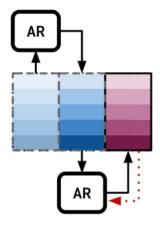
Pushforward trick



One-step training Gradients flow back one time step only

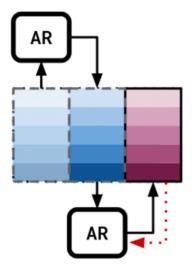


Unrolled training Gradients flow back through all time steps

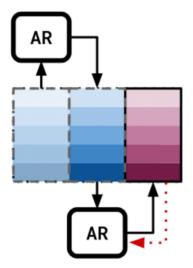


Pushforward training Gradients flow only through last time step

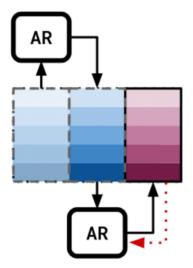
https://www.youtube.com/watch?v=xDrArdzxJEI



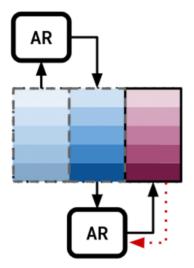
$$L_{\text{one-step}} = \mathbb{E}_{k} \mathbb{E}_{\mathbf{u}^{k+1} | \mathbf{u}^{k}, \mathbf{u}^{k} \sim p_{k}} \left[\mathcal{L}(\mathcal{A}(\mathbf{u}^{k}), \mathbf{u}^{k+1}) \right]$$
$$L_{\text{stability}} = \mathbb{E}_{k} \mathbb{E}_{\mathbf{u}^{k+1} | \mathbf{u}^{k}, \mathbf{u}^{k} \sim p_{k}} \left[\mathbb{E}_{\boldsymbol{\epsilon} | \mathbf{u}^{k}} \left[\mathcal{L}(\mathcal{A}(\mathbf{u}^{k} + \boldsymbol{\epsilon}), \mathbf{u}^{k+1}) \right] \right]$$



$$\begin{split} L_{\text{one-step}} &= \mathbb{E}_{k} \mathbb{E}_{\mathbf{u}^{k+1} | \mathbf{u}^{k}, \mathbf{u}^{k} \sim p_{k}} \left[\mathcal{L}(\mathcal{A}(\mathbf{u}^{k}), \mathbf{u}^{k+1}) \right] \\ L_{\text{stability}} &= \mathbb{E}_{k} \mathbb{E}_{\mathbf{u}^{k+1} | \mathbf{u}^{k}, \mathbf{u}^{k} \sim p_{k}} \left[\mathbb{E}_{\boldsymbol{\epsilon} | \mathbf{u}^{k}} \left[\mathcal{L}(\mathcal{A}(\mathbf{u}^{k} + \boldsymbol{\epsilon}), \mathbf{u}^{k+1}) \right] \right] \\ & \boldsymbol{\epsilon} \not \sim \mathcal{N}(\alpha, \beta^{-1}) \end{split}$$



$$L_{\text{one-step}} = \mathbb{E}_{k} \mathbb{E}_{\mathbf{u}^{k+1} | \mathbf{u}^{k}, \mathbf{u}^{k} \sim p_{k}} \left[\mathcal{L}(\mathcal{A}(\mathbf{u}^{k}), \mathbf{u}^{k+1}) \right]$$
$$L_{\text{stability}} = \mathbb{E}_{k} \mathbb{E}_{\mathbf{u}^{k+1} | \mathbf{u}^{k}, \mathbf{u}^{k} \sim p_{k}} \left[\mathbb{E}_{\boldsymbol{\epsilon} | \mathbf{u}^{k}} \left[\mathcal{L}(\mathcal{A}(\mathbf{u}^{k} + \boldsymbol{\epsilon}), \mathbf{u}^{k+1}) \right] \right]$$
$$\boldsymbol{\epsilon} \not \sim \mathcal{N}(\alpha, \beta^{-1}) \qquad (\mathbf{u}^{k} + \boldsymbol{\epsilon}) = \mathcal{A}(\mathbf{u}^{k-1}) \text{ for } \mathbf{u}^{k-1}$$

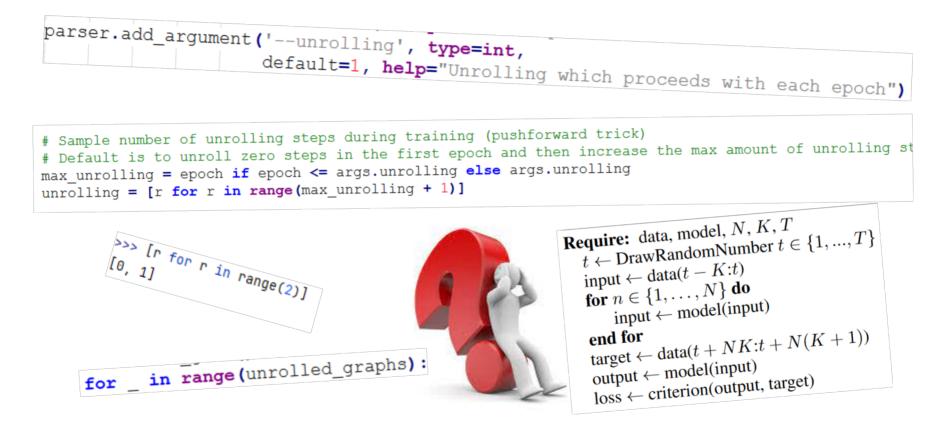


$$\begin{split} L_{\text{one-step}} &= \mathbb{E}_k \mathbb{E}_{\mathbf{u}^{k+1} | \mathbf{u}^k, \mathbf{u}^k \sim p_k} \left[\mathcal{L}(\mathcal{A}(\mathbf{u}^k), \mathbf{u}^{k+1}) \right] \\ L_{\text{stability}} &= \mathbb{E}_k \mathbb{E}_{\mathbf{u}^{k+1} | \mathbf{u}^k, \mathbf{u}^k \sim p_k} \left[\mathbb{E}_{\boldsymbol{\epsilon} | \mathbf{u}^k} \left[\mathcal{L}(\mathcal{A}(\mathbf{u}^k + \boldsymbol{\epsilon}), \mathbf{u}^{k+1}) \right] \right] \\ \boldsymbol{\epsilon} \not\sim \mathcal{N}(\alpha, \beta^{-1}) \qquad (\mathbf{u}^k + \boldsymbol{\epsilon}) = \mathcal{A}(\mathbf{u}^{k-1}) \text{ for } \mathbf{u}^{k-1} \\ L_{\text{one-step}} + L_{\text{stability}} \end{split}$$

```
# Unrolling of the equation which serves as input at the current step
# This is the pushforward trick!!!
with torch.no_grad():
    for _ in range(unrolled_graphs): # 0 or 1
        random_steps = [rs + graph_creator.tw for rs in random_steps]
        _, labels = graph_creator.create_data(u_super, random_steps)
        pred = model(graph)
        graph = graph_creator.create_next_graph(graph, pred, labels, random_steps).to(device)
pred = model(graph)
```

```
loss = criterion(pred, graph.y)
```

Pushforward half of the time?



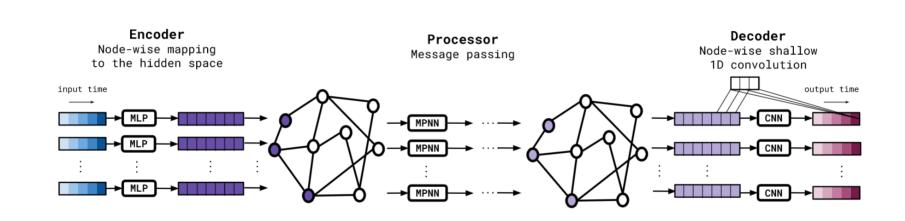
ЛШ

PF in FNOs

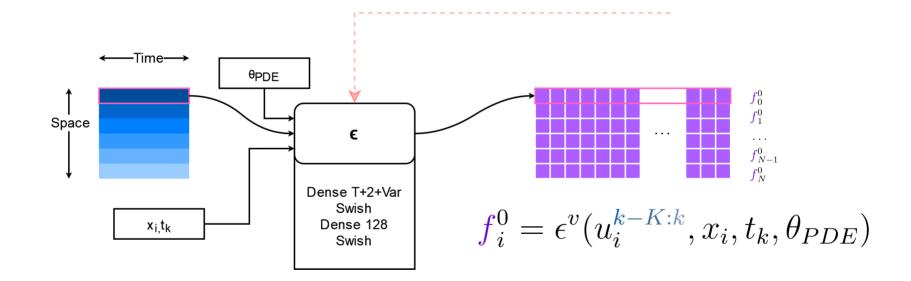
			Accumulated Error ↓			Runtime [s]↓		
	(n_t, n_x)	WENO5	FNO-RNN	FNO-PF	MP-PDE-	MP-PDE	WENO5	MP-PDE
E 1	(250, 100)	2.02	11.93	0.54				
E1	(250, 50)	6.23	29.98	0.51				
E1	(250, 40)	9.63	10.44	0.57				
E2	(250, 100)	1.19	17.09	2.53	100			
E2	(250, 50)	5.35	3.57	2.27				
E2	(250, 40)	8.05	3.26	2.38	3			
E3	(250, 100)	4.71	10.16	5.69		11		
E3	(250, 50)	11.71	14.49	5.39				
E3	(250, 40)	15.94	20.90	5.98			20	S. S. S.

The model

пп



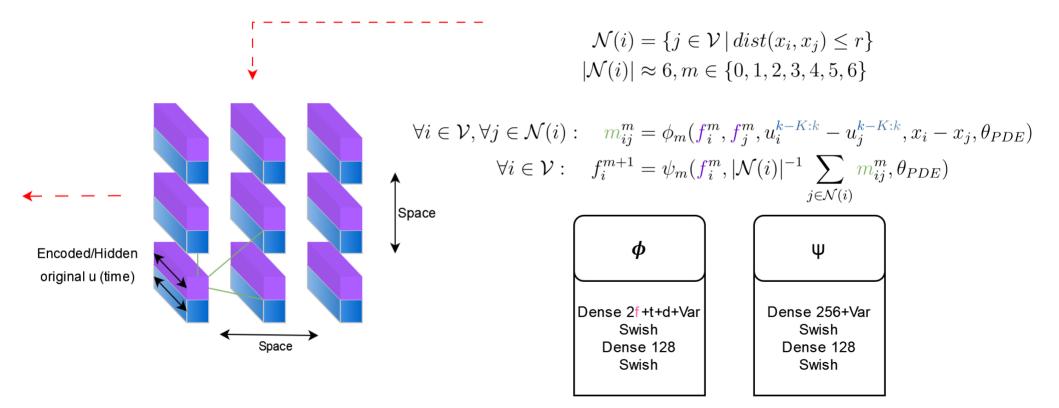
Encoder



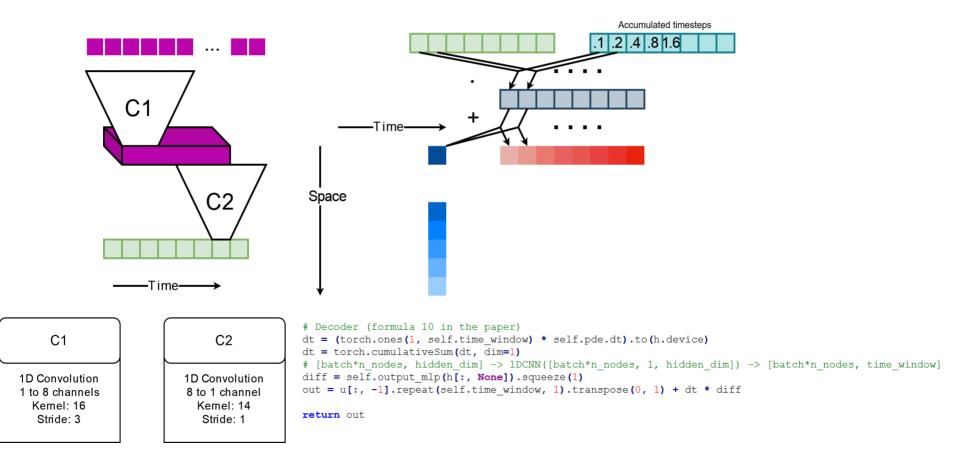
def forward(self, x):
 return x * torch.sigmoid(x)

$$\theta_{PDE} = (\alpha, \beta, \gamma, B.C.s, \dots)$$

Processor



Decoder



Backpropagation?

Backpropagation?

Backpropagation?

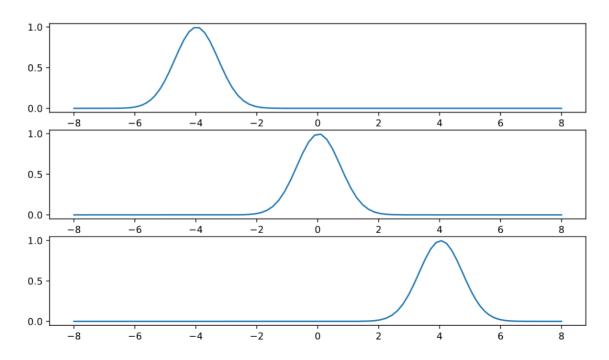

```
pred = model(data)
loss = criterion(pred, labels)
loss = torch.sqrt(loss)
loss.backward()
optimizer.step()
```


$$\partial_{tt}u - c^2 \partial_{xx}u = 0, \qquad x \in [-8, 8]$$

$$\partial_{tt}u - c^2 \partial_{xx}u = 0, \qquad x \in [-8, 8]$$
$$\partial_t[u, v] - [v, c^2 \partial_{xx}u] = 0$$

$$\partial_{tt}u - c^2 \partial_{xx}u = 0, \qquad x \in [-8, 8]$$

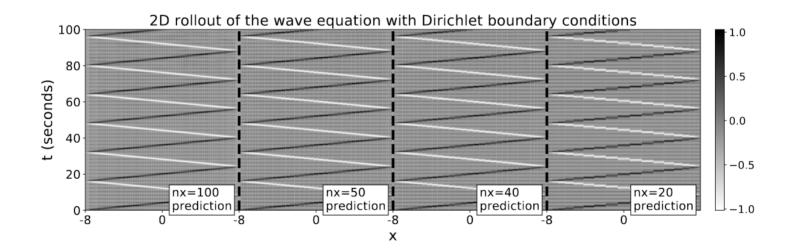
$$\partial_t[u, v] - [v, c^2 \partial_{xx}u] = 0$$



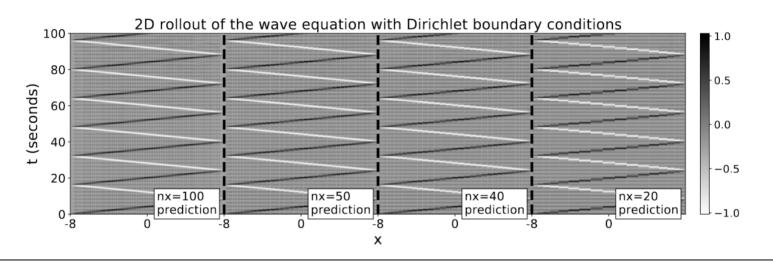
ТШП

$$\partial_{tt}u - c^2 \partial_{xx}u = 0, \qquad x \in [-8, 8]$$

$$\partial_t[u, v] - [v, c^2 \partial_{xx}u] = 0$$



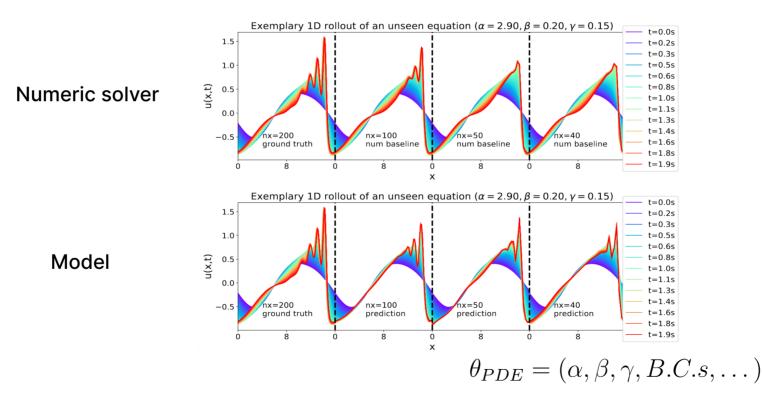
ТШП



	$\frac{1}{n_x} \sum_{x,t} \text{MSE} \downarrow (\textbf{WE1})$		$\left \frac{1}{n_x} \sum_{x,t} \text{MSE} \downarrow (\text{WE2}) \right $		$\frac{1}{n_x} \sum_{x,t} \text{MSE} \downarrow (\textbf{WE3})$			Runtime [s] \downarrow	
(n_t, n_x)	PS	MP-PDE	PS	MP-PDE	PS	MP-PDE θ_{PDE}	MP-PDE	PS	MP-PDE
(250, 100)	0.004	0.137	0.004	0.111	0.004	38.775	0.097	0.60	0.09
(250, 50)	0.450	0.035	0.681	0.034	0.610	20.445	0.106	0.35	0.09
(250, 40)	194.622	0.042	217.300	0.003	204.298	16.859	0.219	0.25	0.09
(250, 20)	breaks	0.059	breaks	0.007	breaks	17.591	0.379	0.20	0.07

Results

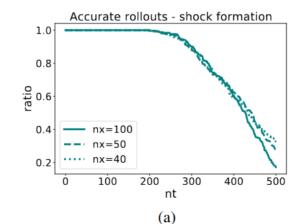
 $[\partial_t u + \partial_x (\alpha u^2 - \beta \partial_x u + \gamma \partial_{xx} u)](t, x) = \delta(t, x)$

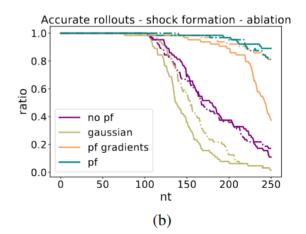


Results

			Ac	Runtime [s] ↓				
	(n_t, n_x)	WENO5	FNO-RNN	FNO-PF	MP-PDE-9PDE	MP-PDE	WENO5	MP-PDE
E 1	(250, 100)	2.02	11.93	0.54	-	1.55	1.9	0.09
E1	(250, 50)	6.23	29.98	0.51	-	1.67	1.8	0.08
E1	(250, 40)	9.63	10.44	0.57	-	1.47	1.7	0.08
E2	(250, 100)	1.19	17.09	2.53	1.62	1.58	1.9	0.09
E2	(250, 50)	5.35	3.57	2.27	1.71	1.63	1.8	0.09
E2	(250, 40)	8.05	3.26	2.38	1.49	1.45	1.7	0.08
E3	(250, 100)	4.71	10.16	5.69	4.71	4.26	4.8	0.09
E3	(250, 50)	11.71	14.49	5.39	10.90	3.74	4.5	0.09
E3	(250, 40)	15.94	20.90	5.98	7.78	3.70	4.4	0.09

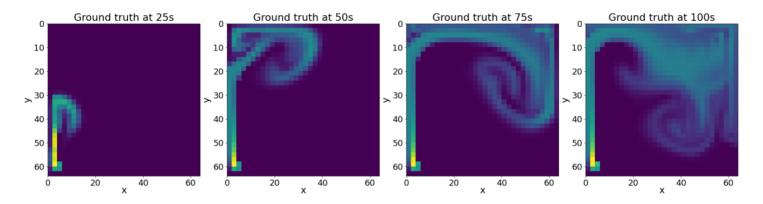
ТΠ

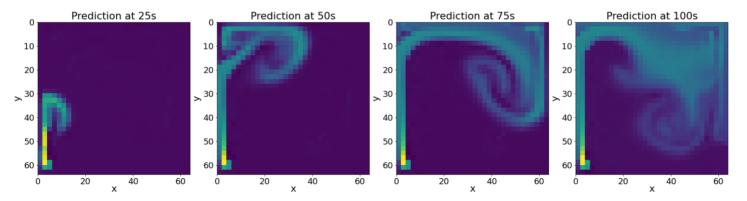




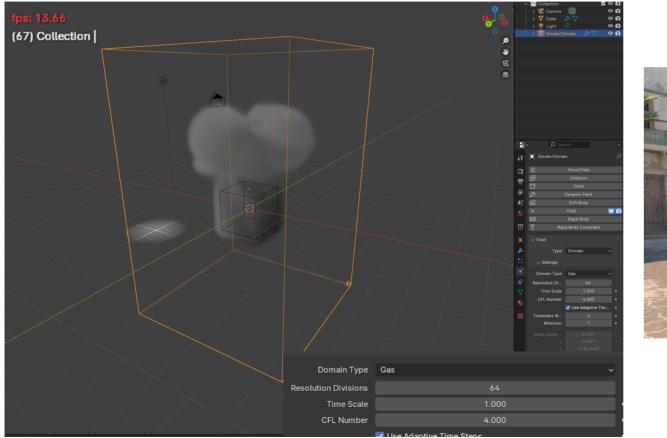
٦Л

Results





Impact



• AI will take over the world

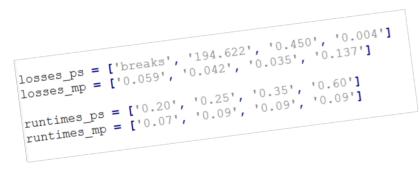
• Al will take over at least revolutionize the world

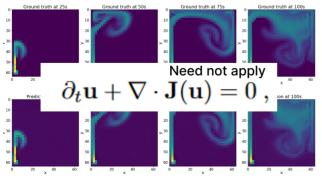
- Al will take over at least revolutionize the world
- Creativity in design is vital for successful models

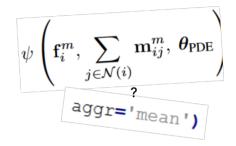
- Al will take over at least revolutionize the world
- Creativity in design is vital for successful models
- Exploring new AI-driven approaches is fun!

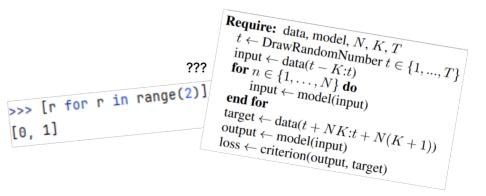
Note to the authors

survival times using pushforward (no pf), no









Thanks!