Multiple View Geometry: Exercise Sheet 2

Prof. Dr. Daniel Cremers, Mohammed Brahimi, Zhenzhang Ye, Regine Hartwig Computer Vision Group, TU Munich

Wednesdays 16:15-17:45 at Hörsaal 2, "Interims I" (5620.01.102), and on RBG Live

Exercise: May 5th, 2021

Part I: Theory

1. Given a rotation matrix $R \in SO(3)$, show that it is indeed a rigid body motion.

Hint: Consider rotating a vector v with R, what properties should Rv satisfy so that R is a rigid body motion?

2. Let A be a real symmetric matrix, and λ_a , λ_b eigenvalues with eigenvectors v_a and v_b . Prove: if v_a and v_b are not orthogonal, it follows: $\lambda_a = \lambda_b$.

Hint: What can you say about $\langle Av_a, v_b \rangle$?

3. Given two unit vectors u and v (i.e. ||u|| = ||v|| = 1), show that the vector w := u + v bisect the angle between u and v.

Hint: Denote the angle between u and v as θ and the angle between w and u as α , what can you say about $\langle u, v \rangle$ and $\langle u, w \rangle$?

4. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with the orthonormal basis of eigenvectors v_1, \ldots, v_n and eigenvalues $\lambda_1 \geq \ldots \geq \lambda_n$. Find all vectors x, that minimize the following term:

$$\min_{||x||=1} x^{\top} A x$$

How many solutions exist? How can the term be maximized?

Hint: Use the expression $x = \sum_{i=1}^{n} \alpha_i v_i$ with coefficients $\alpha_i \in \mathbb{R}$ and compute appropriate coefficients!

5. Let $A \in \mathbb{R}^{m \times n}$. Prove that $kernel(A) = kernel(A^{\top}A)$.

$$\begin{array}{ll} \textit{Hint:} \; \mathsf{Consider} & \mathsf{a}) \; \; x \in \mathsf{kernel}(A) & \Rightarrow x \in \mathsf{kernel}(A^\top A) \\ & \mathsf{and} & \mathsf{b}) \; \; x \in \mathsf{kernel}(A^\top A) & \Rightarrow x \in \mathsf{kernel}(A). \end{array}$$

6. Singular Value Decomposition (SVD)

Let
$$A = USV^{\top}$$
 be the SVD of A.

- (a) Write down possible dimensions for A, U, S and V.
- (b) What are the similarities and differences between the SVD and the eigenvalue decomposition?

- (c) What do you know about the relationship between U, S, V and the eigenvalues and eigenvectors of $A^{\top}A$ and AA^{\top} ?
- (d) What is the interpretation of the entries in S and what do the entries of S tell us about A?