Multiple View Geometry: Exercise Sheet 2

Prof. Dr. Daniel Cremers, Mohammed Brahimi, Zhenzhang Ye, Regine Hartwig
Computer Vision Group, TU Munich
Wednesdays 16:15-17:45 at Hörsaal 2, "Interims I" (5620.01.102), and on RBG Live

Exercise: May 5th, 2021

Part I: Theory

1. Given a rotation matrix $R \in S O(3)$, show that it is indeed a rigid body motion.

Hint: Consider rotating a vector v with R, what properties should $R v$ satisfy so that R is a rigid body motion?
2. Let A be a real symmetric matrix, and λ_{a}, λ_{b} eigenvalues with eigenvectors v_{a} and v_{b}. Prove: if v_{a} and v_{b} are not orthogonal, it follows: $\lambda_{a}=\lambda_{b}$.
Hint: What can you say about $\left\langle A v_{a}, v_{b}\right\rangle$?
3. Given two unit vectors u and v (i.e. $\|u\|=\|v\|=1$), show that the vector $w:=u+v$ bisect the angle between u and v.

Hint: Denote the angle between u and v as θ and the angle between w and u as α, what can you say about $\langle u, v\rangle$ and $\langle u, w\rangle$?
4. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with the orthonormal basis of eigenvectors v_{1}, \ldots, v_{n} and eigenvalues $\lambda_{1} \geq \ldots \geq \lambda_{n}$. Find all vectors x, that minimize the following term:

$$
\min _{\|x\|=1} x^{\top} A x
$$

How many solutions exist? How can the term be maximized?
Hint: Use the expression $x=\sum_{i=1}^{n} \alpha_{i} v_{i}$ with coefficients $\alpha_{i} \in \mathbb{R}$ and compute appropriate coefficients!
5. Let $A \in \mathbb{R}^{m \times n}$. Prove that $\operatorname{kernel}(A)=\operatorname{kernel}\left(A^{\top} A\right)$.

Hint: Consider a) $x \in \operatorname{kernel}(A) \quad \Rightarrow x \in \operatorname{kernel}\left(A^{\top} A\right)$
and \quad b) $x \in \operatorname{kernel}\left(A^{\top} A\right) \quad \Rightarrow x \in \operatorname{kernel}(A)$.
6. Singular Value Decomposition (SVD)

Let $A=U S V^{\top}$ be the SVD of A.
(a) Write down possible dimensions for A, U, S and V.
(b) What are the similarities and differences between the SVD and the eigenvalue decomposition?
(c) What do you know about the relationship between U, S, V and the eigenvalues and eigenvectors of $A^{\top} A$ and $A A^{\top}$?
(d) What is the interpretation of the entries in S and what do the entries of S tell us about A ?

