Multiple View Geometry: Exercise Sheet 3

Prof. Dr. Daniel Cremers,
Mohammed Brahimi, Zhenzhang Ye, Regine Hartwig
Computer Vision Group, TU Munich
Wednesdays 16:15-17:45 at Hörsaal 2, "Interims I" (5620.01.102), and on RBG Live

Exercise: May 15th, 2024

Part I: Theory

1. Write down the matrices $M \in S E(3) \subset \mathbb{R}^{4 \times 4}$ representing the following transformations:
(a) Translation by the vector $T \in \mathbb{R}^{3}$.
(b) Rotation by the rotation matrix $R \in \mathbb{R}^{3 \times 3}$.
(c) Rotation by R followed by the translation T.
(d) Translation by T followed by the rotation R.
2. Let $M_{1}, M_{2} \in \mathbb{R}^{3 \times 3}$. Please prove the following:

$$
\begin{array}{ccc}
\mathbf{x}^{\top} M_{1} \mathbf{x}=\mathbf{x}^{\top} M_{2} \mathbf{x} & \text { iff } & M_{1}-M_{2} \text { is skew-symmetric } \\
\text { for all } \mathbf{x} \in \mathbb{R}^{3} & & \text { (i.e. } \left.M_{1}-M_{2} \in \operatorname{so}(3)\right)
\end{array}
$$

Info: The group $S O(3)$ is called a Lie group.
The space so(3) $=\left\{\hat{\omega} \mid \omega \in \mathbb{R}^{3}\right\}$ of skew-symmetric matrices is called its Lie algebra.
3. Consider a vector $\omega \in \mathbb{R}^{3}$ with $\|\omega\|=1$ and its corresponding skew-symmetric matrix $\hat{\omega}$.
(a) Show that $\hat{\omega}^{2}=\omega \omega^{\top}-I$ and $\hat{\omega}^{3}=-\hat{\omega}$.
(b) Following the result of (a), find simple rules for the calculation of $\hat{\omega}^{n}$ and proof your result. Distinguish between odd and even numbers n.
(c) Derive the Rodrigues' formula for a skew-symmetric matrix $\hat{\omega}$ corresponding to an arbitrary vector $\omega \in \mathbb{R}^{3}$ (i.e. $\|\omega\|$ does not have to be equal to 1):

$$
e^{\hat{\omega}}=I+\frac{\hat{\omega}}{\|\omega\|} \sin (\|\omega\|)+\frac{\hat{\omega}^{2}}{\|\omega\|^{2}}(1-\cos (\|\omega\|))
$$

Hint: Combine your result from (b) with

$$
e^{X}=\sum_{n=0}^{\infty} \frac{X^{n}}{n!} \quad \text { and } \quad \sin (t)=\sum_{n=0}^{\infty}(-1)^{n} \frac{t^{2 n+1}}{(2 n+1)!} \quad \text { and } \quad 1-\cos (t)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{t^{2 n}}{(2 n)!}
$$

