Multiple View Geometry: Exercise Sheet 4

Prof. Dr. Daniel Cremers, Mohammed Brahimi, Zhenzhang Ye, Regine Hartwig

Computer Vision Group, TU Munich
Wednesdays 16:15-17:45 at Hörsaal 2, "Interims I" (5620.01.102), and on RBG Live

Exercise: May 22nd, 2024

Part I: Theory

1. Image Formation

We are looking at the formation of an image in camera coordinates $\mathbf{X}=(X Y Z 1)^{\top}$. In the lecture, you learned the following relation of homogeneous pixel coordinates \mathbf{x}^{\prime} and \mathbf{X} :

$$
\begin{equation*}
\lambda \mathbf{x}^{\prime}=K \Pi_{0} \mathbf{X} \tag{1}
\end{equation*}
$$

with the intrinsic camera matrix K. To clearly differentiate between camera coordinates and pixel coordinates, call the pixel coordinates u and $v: \mathbf{x}^{\prime}=\left(\begin{array}{ll}u & v\end{array}\right)^{\top}$. Furthermore, let the non-homogeneous camera coordinates be $\tilde{\mathbf{X}}:=\Pi_{0} \mathbf{X}=\left(\begin{array}{ll}X & Y\end{array}\right)^{\top}$. (1) is then equivalent to

$$
\lambda\left(\begin{array}{l}
u \tag{2}\\
v \\
1
\end{array}\right)=K \tilde{\mathbf{X}}
$$

Let $s_{x}=s_{y}=1$ and $s_{\theta}=0$ in the intrinsic camera matrix.
(a) Compute λ and show that (2) is equivalent to

$$
\begin{equation*}
u=\frac{f X}{Z}+o_{x}, \quad v=\frac{f Y}{Z}+o_{y} \tag{3}
\end{equation*}
$$

(b) A classic ambiguity of the perspective projection is that one cannot tell an object from another object that is exactly twice as big but twice as far. Explain why this is true.
(c) For a camera with $f=540, o_{x}=320$ and $o_{y}=240$, compute the pixel coordinates u and v of a point $\tilde{\mathbf{X}}=(60100180)^{\top}$. Explain with the help of (b) why the units of $\tilde{\mathbf{X}}$ are not needed for this task. Will the projected point be in the image if it has dimensions 640×480 ?

We define the generic projection π of $\tilde{\mathbf{X}}$ to 2 D coordinates as follows:

$$
\begin{equation*}
\pi(\tilde{\mathbf{X}}):=\binom{X / Z}{Y / Z} \tag{4}
\end{equation*}
$$

(d) Using the generic projection π, show that (3) - and therefore also (1) and (2) - is equivalent to

$$
\left(\begin{array}{l}
u \tag{5}\\
v \\
1
\end{array}\right)=K\binom{\pi(\tilde{\mathbf{X}})}{1}
$$

2. Radial Distortion

A general image formation model for radially distorted cameras is generic projection followed by a non-linear transformation of the radius for each image point. The distorted coordinates of a generically projected point $\tilde{\mathbf{X}}$ are given by

$$
\begin{equation*}
\pi_{d}(\tilde{\mathbf{X}})=g(\|\pi(\tilde{\mathbf{X}})\|) \cdot \pi(\tilde{\mathbf{X}}) \in \mathbb{R}^{2} \tag{6}
\end{equation*}
$$

$g: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is the function that radially distorts the coordinates of $\pi(\tilde{\mathbf{X}})$. It is typically approximated by some parametric function. The pixel coordinates of the distorted camera are

$$
\left(\begin{array}{c}
u_{d} \tag{7}\\
v_{d} \\
1
\end{array}\right)=K\binom{\pi_{d}(\tilde{\mathbf{X}})}{1}=K\binom{g(\|\pi(\tilde{\mathbf{X}})\|) \cdot \pi(\tilde{\mathbf{X}})}{1}
$$

(a) Can this model be used for lenses with a field of view of more than 180° ?

The so-called FOV or ATAN model, first suggested by Devernay and Faugeras in 2001, and used e.g. in the open source implementation of PTAM (Parallel Tracking and Mapping), is given by

$$
\begin{equation*}
g_{\mathrm{ATAN}}(r)=\frac{1}{\omega r} \arctan \left(2 r \tan \left(\frac{\omega}{2}\right)\right) \tag{8}
\end{equation*}
$$

(b) Derive a closed form solution for f in the undistortion formula

$$
\begin{equation*}
\pi(\tilde{\mathbf{X}})=f\left(\left\|\pi_{d}(\tilde{\mathbf{X}})\right\|\right) \cdot \pi_{d}(\tilde{\mathbf{X}}) \tag{9}
\end{equation*}
$$

using (6) and $g(r)=g_{\text {ATAN }}(r)$.
Hint: compute the norm of both sides of the equation in (6) and (9).

Note (additional information):

Both formulations of a distortion model, (6) and (9), can be found in the literature. (9) is the one that was presented in the lecture for a polynomial f. In order to switch between the two formulations, it is beneficial if $g(r) r$ and $f\left(r_{d}\right) r_{d}$ are invertible in closed form. For that reason, the ATAN model is very popular. Another popular choice for radial distortion functions are polynomials.

