Multiple View Geometry: Exercise Sheet 5

Prof. Dr. Daniel Cremers,
Mohammed Brahimi, Zhenzhang Ye, Regine Hartwig
Computer Vision Group, TU Munich
Wednesdays 16:15-17:45 at Hörsaal 2, "Interims I" (5620.01.102), and on RBG Live

Exercise: May 29th, 2024

1. The Lucas-Kanade method

The weighted Lucas-Kanade energy $E(\mathbf{v})$ is defined as

$$
E(\mathbf{v})=\int_{W(\mathbf{x})} G\left(\mathbf{x}-\mathbf{x}^{\prime}\right)\left\|\nabla I\left(\mathbf{x}^{\prime}, t\right)^{\top} \mathbf{v}+\partial_{t} I\left(\mathbf{x}^{\prime}, t\right)\right\|^{2} \mathrm{~d} \mathbf{x}^{\prime}
$$

Assume that the weighting function G is chosen such that $G\left(\mathbf{x}-\mathbf{x}^{\prime}\right)=0$ for any $\mathbf{x}^{\prime} \notin W(\mathbf{x})$. In the following, we note $I_{t}=\partial_{t} I$ and $\left(I_{x_{1}}, I_{x_{2}}\right)^{\top}=\nabla I$.
(a) Prove that the minimizer $\hat{\mathbf{v}}$ of $E(\mathbf{v})$ can be written as

$$
\hat{\mathbf{v}}=-M^{-1} \mathbf{q}
$$

where the entries of M and \mathbf{q} are given by

$$
m_{i j}=G *\left(I_{x_{i}} \cdot I_{x_{j}}\right) \quad \text { and } \quad q_{i}=G *\left(I_{x_{i}} \cdot I_{t}\right)
$$

(b) Show that if the gradient direction is constant in $W(\mathbf{x})$, i.e. $\nabla I\left(\mathbf{x}^{\prime}, t\right)=\alpha\left(\mathbf{x}^{\prime}, t\right) \mathbf{u}$ for a scalar function α and a 2 D vector \mathbf{u}, M is not invertible.

Explain how this observation is related to the aperture problem.
(c) Write down explicit expressions for the two components \hat{v}_{1} and \hat{v}_{2} of the minimizer in terms of $m_{i j}$ and q_{i}.

Note: $G * f$ denotes the convolution of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with a kernel $G: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and is defined as

$$
G * f=\int_{\mathbb{R}^{2}} G\left(\mathbf{x}-\mathbf{x}^{\prime}\right) f\left(\mathbf{x}^{\prime}\right) \mathrm{d} \mathbf{x}^{\prime}
$$

2. The Reconstruction Problem

The bundle adjustment (re-)projection error for N points $\mathbf{X}_{1}, \ldots, \mathbf{X}_{N}$ is

$$
E\left(R, \mathbf{T}, \mathbf{X}_{1}, \ldots, \mathbf{X}_{N}\right)=\sum_{j=1}^{N}\left(\left\|\mathbf{x}_{1}^{j}-\pi\left(\mathbf{X}_{j}\right)\right\|^{2}+\left\|\mathbf{x}_{2}^{j}-\pi\left(R \mathbf{X}_{j}+\mathbf{T}\right)\right\|^{2}\right)
$$

(a) What dimension does the space of unknown variables have if ...

- ... R is restricted to a rotation about the camera's y-axis?
- ... the camera is only rotated, not translated?
- \ldots the points \mathbf{X}_{j} are known to all lie on one plane?

