Multiple View Geometry: Exercise Sheet 5

Prof. Dr. Daniel Cremers, Mohammed Brahimi, Zhenzhang Ye, Regine Hartwig

Computer Vision Group, TU Munich
Wednesdays 16:15-17:45 at Hörsaal 2, "Interims I" (5620.01.102), and on RBG Live

Exercise: May 23th, 2024

Part I: Theory

1. The Lucas-Kanade method

The weighted Lucas-Kanade energy $E(\mathbf{v})$ is defined as

$$
E(\mathbf{v})=\int_{W(\mathbf{x})} G\left(\mathbf{x}-\mathbf{x}^{\prime}\right)\left\|\nabla I\left(\mathbf{x}^{\prime}, t\right)^{\top} \mathbf{v}+\partial_{t} I\left(\mathbf{x}^{\prime}, t\right)\right\|^{2} \mathrm{~d} \mathbf{x}^{\prime}
$$

Assume that the weighting function G is chosen such that $G\left(\mathbf{x}-\mathbf{x}^{\prime}\right)=0$ for any $\mathbf{x}^{\prime} \notin W(\mathbf{x})$. In the following, we note $I_{t}=\partial_{t} I$ and $\left(I_{x_{1}}, I_{x_{2}}\right)^{\top}=\nabla I$.
(a) Prove that the minimizer \mathbf{b} of $E(\mathbf{v})$ can be written as

$$
\mathbf{b}=-M^{-1} \mathbf{q}
$$

where the entries of M and \mathbf{q} are given by

$$
m_{i j}=G *\left(I_{x_{i}} \cdot I_{x_{j}}\right) \quad \text { and } \quad q_{i}=G *\left(I_{x_{i}} \cdot I_{t}\right)
$$

(b) Show that if the gradient direction is constant in $W(\mathbf{x})$, i.e. $\nabla I\left(\mathbf{x}^{\prime}, t\right)=\alpha\left(\mathbf{x}^{\prime}, t\right) \mathbf{u}$ for a scalar function α and a 2D vector \mathbf{u}, M is not invertible.
Explain how this observation is related to the aperture problem.
(c) Write down explicit expressions for the two components b_{1} and b_{2} of the minimizer in terms of $m_{i j}$ and q_{i}.

Note: $G * A$ denotes the convolution of image A with a kernel $G: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and is defined as

$$
G * A=\int_{\mathbb{R}^{2}} G\left(\mathbf{x}-\mathbf{x}^{\prime}\right) A\left(\mathbf{x}^{\prime}\right) \mathrm{d} \mathbf{x}^{\prime}
$$

2. The Reconstruction Problem

When correspondences between two viewpoints are provided, it's possible to estimate the relative pose as well as the corresponding 3D points by minimizing the following cost function:

$$
E\left(R, \mathbf{T}, \mathbf{X}_{1}, \ldots, \mathbf{X}_{N}\right)=\sum_{j=1}^{N}\left(\left\|\mathbf{x}_{1}^{j}-\pi\left(\mathbf{X}_{j}\right)\right\|^{2}+\left\|\mathbf{x}_{2}^{j}-\pi\left(R \mathbf{X}_{j}+\mathbf{T}\right)\right\|^{2}\right)
$$

where $\left(\mathbf{x}_{1}^{j}, \mathbf{x}_{2}^{j}\right)_{j=1 \ldots N}$ are the pairs of corresponding pixels, $\pi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is the projection to the image plane, and $\left(\mathbf{X}_{j}\right)_{j=1 \ldots N}$ are the corresponding 3 D points of the pixels. It basically enforces that the projection of \mathbf{X}_{j} according to camera 1 and 2 result in respectively \mathbf{x}_{1}^{j} and \mathbf{x}_{2}^{j}. What dimension does the space of unknown variables have if ...

- ... R is restricted to a rotation about the camera's y-axis?
- ... the camera is only rotated, not translated?
-.. the points \mathbf{X}_{j} are known to all lie on one plane?

