Multiple View Geometry: Exercise Sheet 5

Prof. Dr. Daniel Cremers, Mohammed Brahimi, Zhenzhang Ye, Regine Hartwig Computer Vision Group, TU Munich Wednesdays 16:15-17:45 at Hörsaal 2, "Interims I" (5620.01.102), and on RBG Live Exercise: May 23th, 2024

Part I: Theory

1. The Lucas-Kanade method

The weighted Lucas-Kanade energy $E(\mathbf{v})$ is defined as

$$E(\mathbf{v}) = \int_{W(\mathbf{x})} G(\mathbf{x} - \mathbf{x}') \left\| \nabla I(\mathbf{x}', t)^{\top} \mathbf{v} + \partial_t I(\mathbf{x}', t) \right\|^2 d\mathbf{x}'.$$

Assume that the weighting function G is chosen such that $G(\mathbf{x} - \mathbf{x}') = 0$ for any $\mathbf{x}' \notin W(\mathbf{x})$. In the following, we note $I_t = \partial_t I$ and $(I_{x_1}, I_{x_2})^\top = \nabla I$.

(a) Prove that the minimizer **b** of $E(\mathbf{v})$ can be written as

$$\mathbf{b} = -M^{-1}\mathbf{q}$$

where the entries of M and q are given by

$$m_{ij} = G * (I_{x_i} \cdot I_{x_j})$$
 and $q_i = G * (I_{x_i} \cdot I_t)$

(b) Show that if the gradient direction is constant in $W(\mathbf{x})$, i.e. $\nabla I(\mathbf{x}', t) = \alpha(\mathbf{x}', t)\mathbf{u}$ for a scalar function α and a 2D vector \mathbf{u} , M is not invertible.

Explain how this observation is related to the aperture problem.

(c) Write down explicit expressions for the two components b_1 and b_2 of the minimizer in terms of m_{ij} and q_i .

Note: G * A denotes the convolution of image A with a kernel $G : \mathbb{R}^2 \to \mathbb{R}$ and is defined as

$$G * A = \int_{\mathbb{R}^2} G(\mathbf{x} - \mathbf{x}') A(\mathbf{x}') d\mathbf{x}'$$

2. The Reconstruction Problem

When correspondences between two viewpoints are provided, it's possible to estimate the relative pose as well as the corresponding 3D points by minimizing the following cost function:

$$E(R, \mathbf{T}, \mathbf{X}_1, ..., \mathbf{X}_N) = \sum_{j=1}^N \left(\|\mathbf{x}_1^j - \pi(\mathbf{X}_j)\|^2 + \|\mathbf{x}_2^j - \pi(R\mathbf{X}_j + \mathbf{T})\|^2 \right)$$

where $(\mathbf{x}_1^j, \mathbf{x}_2^j)_{j=1...N}$ are the pairs of corresponding pixels, $\pi : \mathbb{R}^3 \to \mathbb{R}^2$ is the projection to the image plane, and $(\mathbf{X}_j)_{j=1...N}$ are the corresponding 3D points of the pixels. It basically enforces that the projection of \mathbf{X}_j according to camera 1 and 2 result in respectively \mathbf{x}_1^j and \mathbf{x}_2^j . What dimension does the space of unknown variables have if ...

- ... *R* is restricted to a rotation about the camera's *y*-axis?
- ... the camera is only rotated, not translated?
- ... the points \mathbf{X}_j are known to all lie on one plane?