Multiple View Geometry: Exercise Sheet 8

Prof. Dr. Daniel Cremers,

Mohammed Brahimi, Zhenzhang Ye, Regine Hartwig
Computer Vision Group, TU Munich
Wednesdays 16:15-17:45 at Hörsaal 2, "Interims I" (5620.01.102), and on RBG Live

Exercise: June 21st, 2021

Part I: Theory

Download the ICRA 2013 paper Robust Odometry Estimation for RGB-D Cameras by Kerl, Sturm and Cremers from the Publications sections on our webpage ${ }^{1}$ Read the paper and focus in particular on III. Direct Motion Estimation.

1. Image Warping

(a) Look at the warping function $\tau(\xi, \mathbf{x})$ in Eq. (9). What do $\tau(\xi, \mathbf{x})$ and $r_{i}(\xi)$ look like at $\xi=0$?
(b) Prove that the derivative of $r_{i}(\xi)$ w.r.t. ξ at $\xi=\mathbf{0}$ is

$$
\left.\frac{\partial r_{i}(\xi)}{\partial \xi}\right|_{\xi=\mathbf{0}}=\left.\frac{1}{z}\left(\begin{array}{ll}
I_{x} f_{x} & I_{y} f_{y}
\end{array}\right)\left(\begin{array}{cccccc}
1 & 0 & -\frac{x}{z} & -\frac{x y}{z} & z+\frac{x^{2}}{z} & -y \\
0 & 1 & -\frac{y}{z} & -z-\frac{y^{2}}{z} & \frac{x y}{z} & x
\end{array}\right)\right|_{(x, y, z)^{\top}=\pi^{-1}\left(\mathbf{x}_{i}, Z_{1}\left(\mathbf{x}_{i}\right)\right)}
$$

To this end, apply the chain rule multiple times and use the following identity:

$$
\left.\frac{\partial T(g(\xi), \mathbf{p})}{\partial \xi}\right|_{\xi=\mathbf{0}}=\left(\operatorname{Id}_{3} \quad-\hat{\mathbf{p}}\right) \in \mathbb{R}^{3 \times 6}
$$

Note: The notation $\partial f(x) / \partial x$ denotes the Jacobian matrix including all first-order partial derivatives, where the number of rows is the number of dimensions of $f(x)$, and the number of columns is the number of dimensions of x.
(c) Following the derivation in (b), determine the derivative for arbitrary ξ

$$
\left.\frac{\partial r_{i}(\Delta \xi \circ \xi)}{\partial \Delta \xi}\right|_{\Delta \xi=\mathbf{0}}
$$

where \circ is defined by

$$
\xi_{1} \circ \xi_{2}:=\log \left(\exp \left(\widehat{\xi_{1}}\right) \cdot \exp \left(\widehat{\xi_{2}}\right)\right)^{\vee} .
$$

$\vee: \mathfrak{s e}(3) \rightarrow \mathbb{R}^{6}$ is the inverse of the hat transform.
Hint: Rewrite the problem such that you can make use of part b).

[^0]
2. Image Pyramids

In order to handle large translational and rotational motions, a coarse-to-fine scheme is applied in the paper. To go from one level l to $l+1$, the images $I^{(l)}$ (intensity) and $D^{(l)}$ (depth) are downscaled by averaging over intensities or valid depth values, respectively:

$$
\begin{aligned}
I^{(l+1)}(n, m) & :=\frac{1}{4} \cdot \sum_{\left(n^{\prime}, m^{\prime}\right) \in O(n, m)} I^{(l)}\left(n^{\prime}, m^{\prime}\right) \\
O(n, m) & =\{(2 n, 2 m),(2 n+1,2 m),(2 n, 2 m+1),(2 n+1,2 m+1)\} \\
D^{(l+1)}(n, m) & :=\frac{1}{\left|O_{d}(n, m)\right|} \cdot \sum_{\left(n^{\prime}, m^{\prime}\right) \in O_{d}(n, m)} D^{(l)}\left(n^{\prime}, m^{\prime}\right) \\
O_{d}(n, m) & =\left\{\left(n^{\prime}, m^{\prime}\right) \in O(n, m): D\left(n^{\prime}, m^{\prime}\right) \neq 0\right\}
\end{aligned}
$$

How does the camera matrix K change from level l to $l+1$? Write down $f_{x}^{(l+1)}, f_{y}^{(l+1)}, c_{x}^{(l+1)}$ and $c_{y}^{(l+1)}$ in terms of $f_{x}^{(l)}, f_{y}^{(l)}, c_{x}^{(l)}$ and $c_{y}^{(l)}$.

The following problem requires parts of the content from Lecture on Wednesday, 26.07. You can start them after that lecture.
3. Optimization for Normally Distributed $p\left(r_{i}\right)$
(a) Confirm that a normally distributed $p\left(r_{i}\right)$ with a uniform prior on the camera motion leads to normal least squares minimization. To this end, use

$$
p\left(r_{i} \mid \xi\right)=p\left(r_{i}\right)=A \exp \left(-\frac{r_{i}^{2}}{\sigma^{2}}\right)
$$

to show that with a constant prior $p(\xi)$, the maximum a posteriori estimate is given by

$$
\xi_{\mathrm{MAP}}=\arg \min _{\xi} \sum_{i} r_{i}(\xi)^{2}
$$

(b) Explicitly show that the weights

$$
w\left(r_{i}\right)=\frac{1}{r_{i}} \frac{\partial \log p\left(r_{i}\right)}{\partial r_{i}}
$$

are constant for normally distributed $p\left(r_{i}\right)$.
(c) Show that in the case of normally distributed $p\left(r_{i}\right)$ the update step $\Delta \xi$ can be computed as

$$
\Delta \xi=-\left(J^{\top} J\right)^{-1} J^{\top} \mathbf{r}(\mathbf{0})
$$

[^0]: |https://cvg.cit.tum.de/_media/spezial/bib/kerl13icra.pdf

