Multiple View Geometry: Exercise Sheet 10

Prof. Dr. Daniel Cremers,

Mohammed Brahimi, Zhenzhang Ye, Regine Hartwig
Computer Vision Group, TU Munich
Wednesdays 16:15-17:45 at Hörsaal 2, "Interims I" (5620.01.102), and on RBG Live

Exercise: July 17th, 2024

1. Gauss-Newton Method When optimizing a function $F(x)=\frac{1}{2}\|r(x)\|_{2}^{2}$ with residual $r(x)$, the Gauss-Newton method approximates the residual using a Taylor expansion:

$$
\begin{equation*}
r\left(x_{0}+\Delta x\right) \approx r\left(x_{0}\right)+J_{r}\left(x_{0}\right) \Delta x \tag{1}
\end{equation*}
$$

The minimization problem thus is

$$
\begin{equation*}
\min _{\Delta x} \frac{1}{2}\left\|r_{0}+J_{0} \Delta x\right\|_{2}^{2} \tag{2}
\end{equation*}
$$

with a slight abuse of notation $J:=J_{r}\left(x_{0}\right)$ and $r_{0}:=r\left(x_{0}\right)$.
(a) Compute the gradient of $\frac{1}{2}\left\|r_{0}+J \Delta x\right\|_{2}^{2}$ w.r.t. Δx.
(b) Solve the optimality condition for Δx.
(c) What problems can occur when solving for Δx ?
2. Levenberg-Marquardt Method One way to motivate the Levenberg-Marquardt method is to tackle the previously discussed problem by adding the damping term as follows:

$$
\begin{equation*}
\left(J^{\top} J+\lambda D^{T} D\right) \Delta x=-J^{\top} r . \tag{3}
\end{equation*}
$$

However, this can also be seen as a regularized version of the Gauss-Newton method.

$$
\begin{equation*}
\min _{\Delta x} \frac{1}{2}\|r+J \Delta x\|_{2}^{2}+\frac{\lambda}{2}\|D \Delta x\|_{2}^{2} \tag{4}
\end{equation*}
$$

(a) Compute the gradient of the new cost function w.r.t. Δx.
(b) Solve the optimality condition for Δx.
(c) What is the effect of λ on the solution?
3. Levenberg-Marquardt for Bundle Adjustment Now, we apply the Levenberg-Marquardt method to the bundle adjustment problem. The variables are as follows:

- n_{p} : number poses
- n_{l} : number landmarks
- d_{p} : umber of camera parameters
- $x_{p} \in \mathbb{R}^{n_{p} d_{p}}$: camera parameters
- $x_{l} \in \mathbb{R}^{n_{l} 3}$: landmark positions
- $x=\left[\begin{array}{l}x_{p} \\ x_{l}\end{array}\right]$

We resuse the results from the previous problem

$$
\begin{equation*}
\min _{\Delta x} \frac{1}{2}\|r+J \Delta x\|_{2}^{2}+\frac{\lambda}{2}\|D \Delta x\|_{2}^{2} . \tag{5}
\end{equation*}
$$

which is the following optimality condition

$$
\begin{equation*}
J^{\top} r_{0}=\underbrace{\left(J^{\top} J+\lambda D^{T} D\right)}_{H} \Delta x \text {. } \tag{6}
\end{equation*}
$$

Now we split the Jacobian and damping into two parts $J=\left[\begin{array}{ll}J_{p} & J_{l}\end{array}\right]$ and $D=\left[\begin{array}{ll}D_{p} & D_{l}\end{array}\right]$.
(a) What is the dimension of H ? What problems can occur when solving for Δx ? What are the dimensions of $J_{p}, J_{\ell}, D_{p}, D_{\ell}$? Lets see what we can do...
(b) Rewrite the optimality condition by rewriting the matrix H into the block matrix form, yielding the normal equation:

$$
\left(\begin{array}{cc}
U & W \tag{7}\\
W^{\top} & V
\end{array}\right)\binom{\Delta x_{p}}{\Delta x_{\ell}}=\binom{b_{p}}{b_{\ell}} .
$$

What are U, W, V, b_{p}, b_{ℓ} and their dimensions?
(c) The Schur complement is allowing us to first solve for Δx_{p} using the Schur complement S. Derive the Schur complement S and the vector \tilde{b} for the reduced system: $S \Delta x_{p}=\tilde{b}$.
(d) What is the dimension of S ?
4. Power Bundle Adjustment The goal of Power Bundle Adjustment is to solve the reduced system $S \Delta x_{p}=\tilde{b}$ efficiently.
(a) From the lecture, we know that computing the inverse of the Schur component can be approximated by a matrix power series. Specifically, we have:

$$
\begin{align*}
S & =U\left(I-U^{-1} W V^{-1} W^{\top}\right) \\
\rightarrow S^{-1} & =\left(I-U^{-1} W V^{-1} W^{\top}\right)^{-1} U^{-1} \\
\rightarrow S^{-1} & \approx \sum_{i=0}^{m}\left(U^{-1} W V^{-1} W^{\top}\right)^{i} U^{-1} . \tag{8}
\end{align*}
$$

To apply the matrix power series, we need to guarantee the spectral norm of the matrix is smaller than 1, i.e. show that the eigenvalue μ of $U^{-1} W V^{-1} W^{\top}$ satisfies $0 \leq \mu<1$.
Hint: Consider the similar matrix $U^{-1 / 2} W V^{-1} W U^{-1 / 2}$ for $U^{-1} W V^{-1} W^{\top}$ and show $U^{-1 / 2} W V^{-1} W U^{-1 / 2}$ is positive semi-definite. Additionally, the similar matrix $U^{-1 / 2} S U^{-1 / 2}$ for $U^{-1} S$ and show it is positive definite.
5. Dense RGB-D Tracking In the previous bundle adjustment problem, we have seen how to optimize the camera parameters x_{p} and landmark positions x_{l}. In the context of direct approaches, we optimize for the extrinsic camera parameters $x_{p}=\left[\xi_{1}, \ldots, \xi_{n_{p}}\right]$ using the photometric error as a residual and frame wise depth map h provided. With known camera poses, the 3D geometry can thus be densely be reconstructed. No need to optimize for landmark positions x_{l}. The residual is as follows:

$$
\begin{equation*}
E\left(x_{p}\right)=\sum_{i} \int_{\Omega_{1}}\|\underbrace{I_{1}(x)-I_{i}\left(\Pi g_{\xi_{i}}(h x)\right)}_{r_{x}\left(\xi_{i}\right)}\|^{2} d x \tag{9}
\end{equation*}
$$

where I_{1} and I_{i} are the intensity images, Π is the projection operator, $g_{\xi_{i}}$ is the rigid transorm depending on the camera pose. The integral is over the image domain Ω_{1} with x here being the homogeneous image coordinate and h its depth in the first frame.
(a) Using the results from previous problems, state the solution for minimizing the residual $r_{x}\left(\xi_{i}\right)$ using the Levenberg-Marquardt method.
(b) Compute the Jacobian of the residual $r_{x}\left(\xi_{i}\right)$ w.r.t. the camera parameters ξ_{i}, but don't explicitly compute $\frac{d}{d \xi_{i}} g_{\xi_{i}}(h x)$.

