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1. Gauss-Newton Method When optimizing a function F/(z) = |r(z)||3 with residual r(z), the
Gauss-Newton method approximates the residual using a Taylor expansion:

r(zo + Az) = r(xo) + Jr(z0) Az (1)

The minimization problem thus is
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with a slight abuse of notation J := J,.(x¢) and 7 := 7(z0).

(a) Compute the gradient of 3 ||ro + JAz|]3 w.rt. Az.
(b) Solve the optimality condition for Az.
(c) What problems can occur when solving for Az?

2. Levenberg-Marquardt Method One way to motivate the Levenberg-Marquardt method is to
tackle the previously discussed problem by adding the damping term as follows:

(JTJ n ADTD) Az = —JTrg. 3)

However, this can also be seen as a regularized version of the Gauss-Newton method.
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(a) Compute the gradient of the new cost function w.r.t. Az.

(b) Solve the optimality condition for Az.

(c) What is the effect of A on the solution?

3. Levenberg-Marquardt for Bundle Adjustment Now, we apply the Levenberg-Marquardt
method to the bundle adjustment problem. The variables are as follows:

* n,: number poses
¢ n;: number landmarks
* d,: number of camera parameters
e x, € R™%: camera parameters

* x; € R™3: landmark positions
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We resuse the results from the previous problem

1 A
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which is the following optimality condition

(JTJ+ADTD) Az = —J "rg. (6)
H

Now we split the Jacobian and damping into two parts J = [Jp Jl} and D = [Dp Dl].

(a) What is the dimension of H? What problems can occur when solving for Ax? What are
the dimensions of J), J;, D, D,? Lets see what we can do...

(b) Rewrite the optimality condition by rewriting the matrix H into the block matrix form,
yielding the normal equation:

U W\ (Ax b
(e v) (7)) ®

What are U, W, V, b, by and their dimensions?

(¢) The Schur complement is allowing us to first solve for Az, using the Schur complement
S. Derive the Schur complement S and the vector b for the reduced system: SAx, = b.

(d) What is the dimension of S?

4. Power Bundle Adjustment The goal of Power Bundle Adjustment is to solve the reduced
system SAz, = b efficiently.

(a) From the lecture, we know that computing the inverse of the Schur component can be
approximated by a matrix power series. Specifically, we have:
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To apply the matrix power series, we need to guarantee the spectral norm of the matrix is
smaller than 1, i.e. show that all the eigenvalues p of U 'WV1W T satisfy 0 < p < 1.

Hint: Consider the similar matrix U~'/2WV = 1WU~1/2 for U"'WV~'W T and show
U—12WV—1WU—1/2 is positive semi-definite. Additionally, the similar matrix U~ /25U ~1/2
for U~1S and show it is positive definite.



5. Dense RGB-D Tracking In the previous bundle adjustment problem, we have seen how to
optimize the camera parameters x;, and landmark positions ;. Here, in the context of direct
tracking, we optimize for the extrinsic camera parameters x, = [£1, ..., &y, using the photo-
metric error as a residual and frame wise depth map h provided. With known camera poses, the
3D geometry can thus be densely be reconstructed. No need to optimize for landmark positions
x;. The residual is as follows:

Blwp) =) /Q | 11 () — Li(Tge, (ha)) |[*de ©)
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where I and I; are the intensity images, II is the projection operator, ge, is the rigid transorm

depending on the camera pose. The integral is over the image domain §2; with x here being the
homogeneous image coordinate and A its depth in the first frame.

(a) Using the results from previous problems, state the optimality condition for minimizing
l|l72(&:)]|3 using the Levenberg-Marquardt method.

(b) Compute the derivative of the residual 7,(&;) w.r.t. the camera parameters &; using the
chain rule. You don’t have to explicitly compute d% ge, (hx).



