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(5620.01.102), and on RBG Live

Exercise: July 17th, 2024

1. Gauss-Newton Method When optimizing a function F (x) = 1
2‖r(x)‖22 with residual r(x), the

Gauss-Newton method approximates the residual using a Taylor expansion:

r(x0 + ∆x) ≈ r(x0) + Jr(x0)∆x (1)

The minimization problem thus is

min
∆x

1

2
‖r0 + J0∆x‖22 (2)

with a slight abuse of notation J := Jr(x0) and r0 := r(x0).

(a) Compute the gradient of 1
2‖r0 + J∆x‖22 w.r.t. ∆x.

(b) Solve the optimality condition for ∆x.

(c) What problems can occur when solving for ∆x?

2. Levenberg-Marquardt Method One way to motivate the Levenberg-Marquardt method is to
tackle the previously discussed problem by adding the damping term as follows:(

J>J + λDTD
)

∆x = −J>r. (3)

However, this can also be seen as a regularized version of the Gauss-Newton method.

min
∆x

1

2
‖r + J∆x‖22 +

λ

2
‖D∆x‖22. (4)

(a) Compute the gradient of the new cost function w.r.t. ∆x.

(b) Solve the optimality condition for ∆x.

(c) What is the effect of λ on the solution?

3. Levenberg-Marquardt for Bundle Adjustment Now, we apply the Levenberg-Marquardt
method to the bundle adjustment problem. The variables are as follows:

• np: number poses

• nl: number landmarks

• dp: umber of camera parameters

• xp ∈ Rnpdp : camera parameters

• xl ∈ Rnl3: landmark positions

• x =

[
xp
xl

]
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We resuse the results from the previous problem

min
∆x

1

2
‖r + J∆x‖22 +

λ

2
‖D∆x‖22. (5)

which is the following optimality condition

J>r0 = (J>J + λDTD)︸ ︷︷ ︸
H

∆x. (6)

Now we split the Jacobian and damping into two parts J =
[
Jp Jl

]
and D =

[
Dp Dl

]
.

(a) What is the dimension of H? What problems can occur when solving for ∆x? What are
the dimensions of Jp, J`, Dp, D`? Lets see what we can do...

(b) Rewrite the optimality condition by rewriting the matrix H into the block matrix form,
yielding the normal equation:(

U W
W> V

)(
∆xp
∆x`

)
=

(
bp
b`

)
. (7)

What are U,W, V, bp, b` and their dimensions?

(c) The Schur complement is allowing us to first solve for ∆xp using the Schur complement
S. Derive the Schur complement S and the vector b̃ for the reduced system: S∆xp = b̃.

(d) What is the dimension of S?

4. Power Bundle Adjustment The goal of Power Bundle Adjustment is to solve the reduced
system S∆xp = b̃ efficiently.

(a) From the lecture, we know that computing the inverse of the Schur component can be
approximated by a matrix power series. Specifically, we have:

S = U(I − U−1WV −1W>)

→ S−1 = (I − U−1WV −1W>)−1U−1

→ S−1 ≈
m∑
i=0

(U−1WV −1W>)iU−1.

(8)

To apply the matrix power series, we need to guarantee the spectral norm of the matrix is
smaller than 1, i.e. show that the eigenvalue µ of U−1WV −1W> satisfies 0 ≤ µ < 1.
Hint: Consider the similar matrix U−1/2WV −1WU−1/2 for U−1WV −1W> and show
U−1/2WV −1WU−1/2 is positive semi-definite. Additionally, the similar matrixU−1/2SU−1/2

for U−1S and show it is positive definite.
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5. Dense RGB-D Tracking In the previous bundle adjustment problem, we have seen how to op-
timize the camera parameters xp and landmark positions xl. In the context of direct approaches,
we optimize for the extrinsic camera parameters xp = [ξ1, ..., ξnp ] using the photometric error
as a residual and frame wise depth map h provided. With known camera poses, the 3D geom-
etry can thus be densely be reconstructed. No need to optimize for landmark positions xl. The
residual is as follows:

E(xp) =
∑
i

∫
Ω1

‖ I1(x)− Ii(Πgξi(hx))︸ ︷︷ ︸
rx(ξi)

‖2dx (9)

where I1 and Ii are the intensity images, Π is the projection operator, gξi is the rigid transorm
depending on the camera pose. The integral is over the image domain Ω1 with x here being the
homogeneous image coordinate and h its depth in the first frame.

(a) Using the results from previous problems, state the solution for minimizing the residual
rx(ξi) using the Levenberg-Marquardt method.

(b) Compute the Jacobian of the residual rx(ξi) w.r.t. the camera parameters ξi, but don’t
explicitly compute d

dξi
gξi(hx).
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