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Part I: Theory

1. Rigid body motion requires to preserve 1) the norm and 2) the cross product. We first show the
norm preservation, given a vector v € R3 and a rotation matrix R € R3*3:

l|IRv||* = (Rv)"Rv=v"R"Rv=v"v = |jv]|?

Next, we show the cross product preservation. Given two vectors a and b and assume we only
rotate around x-axis with angle 8. Therefore, the rotation matrix is:

1 0 0
R;(0) = |0 cos(f#) —sin(f)
0 sin(f) cos(@)

Rotating the cross product of a and b with R, (), we have:

a; b1 azbz — azbo
axb= as X b2 = agbl — a1b3

as b3 a1by — azby

1 0 0 a2b3 - a3b2

= Ry(0)(axb) =10 cos(d) —sin(h) asb; — a1bs
0 sin(f) cos(6) a1ba — ash;
azbg — agbg
= | cos(f)(asbr — a1bs) — sin(0)(a1by — azby)
sin(0)(asby — a1bs) + cos(0)(a1be — azby)

Now, we first rotate @ and b with R, (6) and then calculate the cross product:

1 0 0 ax 1 0 0 b1
(Ry(0)a) x (R (0)b) = [ 0 cos(f) —sin(6) az | X |0 cos(f) —sin(0) b
0 sin(f) cos(d) as 0 sin(f) cos(d) b3
a b1
= | cos(@)az — sin(f)as | x | cos(0)be — sin(0)bs
sin(0)az + cos(#)as sin(6)by + cos(8)bs

Following the caculation of the cross product, we can see that the two results are the same.
Therefore, the cross product is preserved under rotation around the x-axis. The same can be
shown for the y and z axis. The corresponding rotation matrices are:

cos(f) 0 sin() cos(f) —sin(d) 0
R,(6) = 0 1 0 R,(0) = | sin(d) cos(@) 0
—sin(f) 0 cos(f) 0 0 1
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3. We assume u # —wv. Otherwise, we only get w = 0. We first compute the inner product
between v and v:

(u,v) = ||ul|||v]] cos() =1-1-cos(8) = cos(d)
Next, we compute the inner product between w and u:
(w,u) = (u+v,u) = (u,u) + (v,u) = 1+ cos(d)
Alternatively, we can compute the inner product between w and w as follows:
(w,u) = [lw]l|ul| cos(@) = [[u + v cos(a)

Now, we compute ||u + v||:

-+ oll = V/{u + v, 0+ v) = V/{u,u) + 2(u,0) + (0,0) = 1+ 2c08(6) + 1= v/2(1 + cos(9))
Finally, we compute cos(«):

||lu + vl cos(a) = 1 + cos(0)
= 1/2(1 + cos(#)) cos(a) = 1 + cos(0)
1+ cos(0)

= cos(a) = 2(1 + coS(Q))'

Because cos?(0/2) = HCTOS(G), we have shown o = 6/2.

4. Let V be the orthonormal matrix (i.e. V' = V1) given by the eigenvectors, and ¥ the diagonal
matrix containing the eigenvalues:

‘ | A O
V=1vi -+ v, and X =] o

0 A

As V is a basis, we can express z as a linear combination of the eigenvectors x = V a, for some
a € R™ For ||z|]|=1wehave ), a? =a'a=2"VV 'z =xz"z =1 This gives
Az =2 VIV
=o' VVEV Va
=a'Ya = Z ag)\i
i

Considering ), oz% = 1, we can conclude that this expression is minimized iff only the «;
corresponding to the smallest eigenvalue(s) are non-zero. If A\,_1 > A, there exist only two
solutions (o, = *£1), otherwise infinitely many.

For maximisation, only the the «; corresponding to the largest eigenvalue(s) can be non-zero.



5. We show that: z € kernel(A) < = € kernel(A T A).

”=": Let x € kernel(A)
AT Az =AT0=0 =z ckemel(ATA)
=0
»<": Letz € kernel(AT A)
0=x" AT Az = (Az, Az) = ||Az||> = Az =0 = z € kernel(A)
=0

6. Singular Value Decomposition (SVD)
Note: There exist multiple slightly different definitions of the SVD. Depending on the conven-
tion used, we might have S € R™*" S € R"*™ or S € RP*P where p = rank(A). In
the lecture the first option was presented. In the following, we present the results for the same
option, since that is the one that numpy . linalg. svd function returns by default.

(@) AeR™*" U e Rm*™ § e RM*" YV ¢ RM*™
(b) Similarities and differences between SVD and EVD:

i. Both are matrix diagonalization techniques.
ii. The SVD can be applied to matrices A € R™*" with m # n, whereas the EVD is
only applicable to quadratic matrices (A4 € R™*™ with m = n).

(c) Relationship between U, S,V and the eigenvalues and eigenvectors of AT Aand AA:

i. AT A: The columns of V are eigenvectors; the squares of the diagonal elements of S
are eigenvalues.

ii. AA": The columns of U are eigenvectors; the squares of the diagonal elements of S
are eigenvalues (possibly filled up with zeros).

(d) Entries in S:

i. S is a diagonal matrix. The elements along the diagonal are the singular values of A.
ii. The number of non-zero singular values gives us the rank of the matrix A.



