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Exercise: May 8th, 2024

Part I: Theory

1. Rigid body motion requires to preserve 1) the norm and 2) the cross product. We first show the
norm preservation, given a vector v ∈ R3 and a rotation matrix R ∈ R3×3:

||Rv||2 = (Rv)⊤Rv = v⊤R⊤Rv = v⊤v = ||v||2

Next, we show the cross product preservation. Given two vectors a and b and assume we only
rotate around x-axis with angle θ. Therefore, the rotation matrix is:

Rx(θ) =

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)


Rotating the cross product of a and b with Rx(θ), we have:

a× b =

a1
a2
a3

×

b1
b2
b3

 =

a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1


⇒ Rx(θ)(a× b) =

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1


=

 a2b3 − a3b2
cos(θ)(a3b1 − a1b3)− sin(θ)(a1b2 − a2b1)
sin(θ)(a3b1 − a1b3) + cos(θ)(a1b2 − a2b1)


Now, we first rotate a and b with Rx(θ) and then calculate the cross product:

(Rx(θ)a)× (Rx(θ)b) =

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

a1
a2
a3

×

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

b1
b2
b3


=

 a1
cos(θ)a2 − sin(θ)a3
sin(θ)a2 + cos(θ)a3

×

 b1
cos(θ)b2 − sin(θ)b3
sin(θ)b2 + cos(θ)b3



Following the caculation of the cross product, we can see that the two results are the same.
Therefore, the cross product is preserved under rotation around the x-axis. The same can be
shown for the y and z axis. The corresponding rotation matrices are:

Ry(θ) =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 Rz(θ) =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


1

https://live.rbg.tum.de/?year=2024&term=S


2. λa = (λava)⊤vb
⟨va,vb⟩ = v⊤a A⊤vb

⟨va,vb⟩ = v⊤a Avb
⟨va,vb⟩ =

v⊤a (λbvb)
⟨va,vb⟩ = λb

3. We assume u ̸= −v. Otherwise, we only get w = 0. We first compute the inner product
between u and v:

⟨u, v⟩ = ∥u∥∥v∥ cos(θ) = 1 · 1 · cos(θ) = cos(θ)

Next, we compute the inner product between w and u:

⟨w, u⟩ = ⟨u+ v, u⟩ = ⟨u, u⟩+ ⟨v, u⟩ = 1 + cos(θ)

Alternatively, we can compute the inner product between w and u as follows:

⟨w, u⟩ = ∥w∥∥u∥ cos(α) = ∥u+ v∥ cos(α)

Now, we compute ∥u+ v∥:

∥u+ v∥ =
√
⟨u+ v, u+ v⟩ =

√
⟨u, u⟩+ 2⟨u, v⟩+ ⟨v, v⟩ =

√
1 + 2 cos(θ) + 1 =

√
2(1 + cos(θ))

Finally, we compute cos(α):

∥u+ v∥ cos(α) = 1 + cos(θ)

⇒
√
2(1 + cos(θ)) cos(α) = 1 + cos(θ)

⇒ cos(α) =
1 + cos(θ)√
2(1 + cos(θ))

.

Because cos2(θ/2) = 1+cos(θ)
2 , we have shown α = θ/2.

4. Let V be the orthonormal matrix (i.e. V ⊤ = V −1) given by the eigenvectors, and Σ the diagonal
matrix containing the eigenvalues:

V =

 | |
v1 · · · vn
| |

 and Σ =


λ1 0

. . .

0
. . . 0

. . . 0 λn

 .

As V is a basis, we can express x as a linear combination of the eigenvectors x = V α, for some
α ∈ Rn. For ||x|| = 1 we have

∑
i α

2
i = α⊤α = x⊤V V ⊤x = x⊤x = 1. This gives

x⊤Ax = x⊤V ΣV −1x

= α⊤V ⊤V ΣV ⊤V α

= α⊤Σα =
∑
i

α2
iλi

Considering
∑

i α
2
i = 1, we can conclude that this expression is minimized iff only the αi

corresponding to the smallest eigenvalue(s) are non-zero. If λn−1 ⪈ λn, there exist only two
solutions (αn = ±1), otherwise infinitely many.

For maximisation, only the the αi corresponding to the largest eigenvalue(s) can be non-zero.
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5. We show that: x ∈ kernel(A) ⇔ x ∈ kernel(A⊤A).

”⇒”: Let x ∈ kernel(A)
A⊤ Ax︸︷︷︸

=0

= A⊤0 = 0 ⇒ x ∈ kernel(A⊤A)

”⇐”: Let x ∈ kernel(A⊤A)
0 = x⊤A⊤Ax︸ ︷︷ ︸

=0

= ⟨Ax,Ax⟩ = ||Ax||2 ⇒ Ax = 0 ⇒ x ∈ kernel(A)

6. Singular Value Decomposition (SVD)
Note: There exist multiple slightly different definitions of the SVD. Depending on the conven-
tion used, we might have S ∈ Rm×n, S ∈ Rn×n, or S ∈ Rp×p where p = rank(A). In
the lecture the first option was presented. In the following, we present the results for the same
option, since that is the one that numpy.linalg.svd function returns by default.

(a) A ∈ Rm×n, U ∈ Rm×m, S ∈ Rm×n, V ∈ Rn×n

(b) Similarities and differences between SVD and EVD:

i. Both are matrix diagonalization techniques.
ii. The SVD can be applied to matrices A ∈ Rm×n with m ̸= n, whereas the EVD is

only applicable to quadratic matrices (A ∈ Rm×n with m = n).

(c) Relationship between U, S, V and the eigenvalues and eigenvectors of A⊤A and AA⊤:

i. A⊤A: The columns of V are eigenvectors; the squares of the diagonal elements of S
are eigenvalues.

ii. AA⊤: The columns of U are eigenvectors; the squares of the diagonal elements of S
are eigenvalues (possibly filled up with zeros).

(d) Entries in S:

i. S is a diagonal matrix. The elements along the diagonal are the singular values of A.
ii. The number of non-zero singular values gives us the rank of the matrix A.
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