Multiple View Geometry: Solution Sheet 2

Prof. Dr. Daniel Cremers,
Mohammed Brahimi, Zhenzhang Ye, Regine Hartwig
Computer Vision Group, TU Munich
Wednesdays 16:15-17:45 at Hörsaal 2, "Interims I" (5620.01.102), and on RBG Live

Exercise: May 8th, 2024

Part I: Theory

1. Rigid body motion requires to preserve 1) the norm and 2) the cross product. We first show the norm preservation, given a vector $v \in \mathbb{R}^{3}$ and a rotation matrix $R \in \mathbb{R}^{3 \times 3}$:

$$
\|R v\|^{2}=(R v)^{\top} R v=v^{\top} R^{\top} R v=v^{\top} v=\|v\|^{2}
$$

Next, we show the cross product preservation. Given two vectors a and b and assume we only rotate around x -axis with angle θ. Therefore, the rotation matrix is:

$$
R_{x}(\theta)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right)
$$

Rotating the cross product of a and b with $R_{x}(\theta)$, we have:

$$
\begin{aligned}
a \times b & =\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \times\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=\left(\begin{array}{l}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right) \\
\Rightarrow R_{x}(\theta)(a \times b) & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right)\left(\begin{array}{l}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right) \\
& =\binom{\cos (\theta)\left(a_{3} b_{1}-a_{1} b_{3}\right)-\sin (\theta)\left(a_{1} b_{2}-a_{2} b_{1}\right)}{\sin (\theta)\left(a_{3} b_{1}-a_{1} b_{3}\right)+\cos (\theta)\left(a_{1} b_{2}-a_{2} b_{1}\right)}
\end{aligned}
$$

Now, we first rotate a and b with $R_{x}(\theta)$ and then calculate the cross product:

$$
\begin{aligned}
\left(R_{x}(\theta) a\right) \times\left(R_{x}(\theta) b\right) & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right)\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \times\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right)\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) \\
& =\left(\begin{array}{c}
a_{1} \\
\cos (\theta) a_{2}-\sin (\theta) a_{3} \\
\sin (\theta) a_{2}+\cos (\theta) a_{3}
\end{array}\right) \times\left(\begin{array}{c}
b_{1} \\
\cos (\theta) b_{2}-\sin (\theta) b_{3} \\
\sin (\theta) b_{2}+\cos (\theta) b_{3}
\end{array}\right)
\end{aligned}
$$

Following the caculation of the cross product, we can see that the two results are the same. Therefore, the cross product is preserved under rotation around the x-axis. The same can be shown for the y and z axis. The corresponding rotation matrices are:

$$
R_{y}(\theta)=\left(\begin{array}{ccc}
\cos (\theta) & 0 & \sin (\theta) \\
0 & 1 & 0 \\
-\sin (\theta) & 0 & \cos (\theta)
\end{array}\right) \quad R_{z}(\theta)=\left(\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right)
$$

2. $\lambda_{a}=\frac{\left(\lambda_{a} v_{a}\right)^{\top} v_{b}}{\left\langle v_{a}, v_{b}\right\rangle}=\frac{v_{a}^{\top} A^{\top} v_{b}}{\left\langle v_{a}, v_{b}\right\rangle}=\frac{v_{a}^{\top} A v_{b}}{\left\langle v_{a}, v_{b}\right\rangle}=\frac{v_{a}^{\top}\left(\lambda_{b} v_{b}\right)}{\left\langle v_{a}, v_{b}\right\rangle}=\lambda_{b}$
3. We assume $u \neq-v$. Otherwise, we only get $w=0$. We first compute the inner product between u and v :

$$
\langle u, v\rangle=\|u\|\|v\| \cos (\theta)=1 \cdot 1 \cdot \cos (\theta)=\cos (\theta)
$$

Next, we compute the inner product between w and u :

$$
\langle w, u\rangle=\langle u+v, u\rangle=\langle u, u\rangle+\langle v, u\rangle=1+\cos (\theta)
$$

Alternatively, we can compute the inner product between w and u as follows:

$$
\langle w, u\rangle=\|w\|\|u\| \cos (\alpha)=\|u+v\| \cos (\alpha)
$$

Now, we compute $\|u+v\|$:
$\|u+v\|=\sqrt{\langle u+v, u+v\rangle}=\sqrt{\langle u, u\rangle+2\langle u, v\rangle+\langle v, v\rangle}=\sqrt{1+2 \cos (\theta)+1}=\sqrt{2(1+\cos (\theta))}$
Finally, we compute $\cos (\alpha)$:

$$
\begin{aligned}
\|u+v\| \cos (\alpha) & =1+\cos (\theta) \\
\Rightarrow \sqrt{2(1+\cos (\theta))} \cos (\alpha) & =1+\cos (\theta) \\
\Rightarrow \cos (\alpha) & =\frac{1+\cos (\theta)}{\sqrt{2(1+\cos (\theta))}}
\end{aligned}
$$

Because $\cos ^{2}(\theta / 2)=\frac{1+\cos (\theta)}{2}$, we have shown $\alpha=\theta / 2$.
4. Let V be the orthonormal matrix (i.e. $V^{\top}=V^{-1}$) given by the eigenvectors, and Σ the diagonal matrix containing the eigenvalues:

$$
V=\left(\begin{array}{ccc}
\mid & & \mid \\
v_{1} & \cdots & v_{n} \\
\mid & & \mid
\end{array}\right) \quad \text { and } \quad \Sigma=\left(\begin{array}{ccc}
\lambda_{1} & 0 & \ddots \\
0 & \ddots & 0 \\
\ddots & 0 & \lambda_{n}
\end{array}\right)
$$

As V is a basis, we can express x as a linear combination of the eigenvectors $x=V \alpha$, for some $\alpha \in \mathbb{R}^{n}$. For $\|x\|=1$ we have $\sum_{i} \alpha_{i}^{2}=\alpha^{\top} \alpha=x^{\top} V V^{\top} x=x^{\top} x=1$. This gives

$$
\begin{aligned}
x^{\top} A x & =x^{\top} V \Sigma V^{-1} x \\
& =\alpha^{\top} V^{\top} V \Sigma V^{\top} V \alpha \\
& =\alpha^{\top} \Sigma \alpha=\sum_{i} \alpha_{i}^{2} \lambda_{i}
\end{aligned}
$$

Considering $\sum_{i} \alpha_{i}^{2}=1$, we can conclude that this expression is minimized iff only the α_{i} corresponding to the smallest eigenvalue(s) are non-zero. If $\lambda_{n-1} \ngtr \lambda_{n}$, there exist only two solutions ($\alpha_{n}= \pm 1$), otherwise infinitely many.
For maximisation, only the the α_{i} corresponding to the largest eigenvalue(s) can be non-zero.
5. We show that: $\quad x \in \operatorname{kernel}(A) \Leftrightarrow x \in \operatorname{kernel}\left(A^{\top} A\right)$.
$" \Rightarrow "$: Let $x \in \operatorname{kernel}(A)$

$$
A^{\top} \underbrace{A x}_{=0}=A^{\top} 0=0 \quad \Rightarrow x \in \operatorname{kernel}\left(A^{\top} A\right)
$$

$" \Leftarrow ":$ Let $x \in \operatorname{kernel}\left(A^{\top} A\right)$
$0=x^{\top} \underbrace{A^{\top} A x}_{=0}=\langle A x, A x\rangle=\|A x\|^{2} \quad \Rightarrow A x=0 \quad \Rightarrow x \in \operatorname{kernel}(A)$
6. Singular Value Decomposition (SVD)

Note: There exist multiple slightly different definitions of the SVD. Depending on the convention used, we might have $S \in \mathbb{R}^{m \times n}, S \in \mathbb{R}^{n \times n}$, or $S \in \mathbb{R}^{p \times p}$ where $p=\operatorname{rank}(A)$. In the lecture the first option was presented. In the following, we present the results for the same option, since that is the one that numpy. linalg.svd function returns by default.
(a) $A \in \mathbb{R}^{m \times n}, U \in \mathbb{R}^{m \times m}, S \in \mathbb{R}^{m \times n}, V \in \mathbb{R}^{n \times n}$
(b) Similarities and differences between SVD and EVD:
i. Both are matrix diagonalization techniques.
ii. The SVD can be applied to matrices $A \in \mathbb{R}^{m \times n}$ with $m \neq n$, whereas the EVD is only applicable to quadratic matrices $\left(A \in \mathbb{R}^{m \times n}\right.$ with $\left.m=n\right)$.
(c) Relationship between U, S, V and the eigenvalues and eigenvectors of $A^{\top} A$ and $A A^{\top}$:
i. $A^{\top} A$: The columns of V are eigenvectors; the squares of the diagonal elements of S are eigenvalues.
ii. $A A^{\top}$: The columns of U are eigenvectors; the squares of the diagonal elements of S are eigenvalues (possibly filled up with zeros).
(d) Entries in S :
i. S is a diagonal matrix. The elements along the diagonal are the singular values of A.
ii. The number of non-zero singular values gives us the rank of the matrix A.

