Selected topics in DL: Equivariance & Dynamics Preliminary meeting

CVG, 11.02.2025

Unconstrained large-scale learning

Use

What is the pH of a 0.10 M solution of NH_4F ? The K_a of NH_4^+ is $5.6 imes10^{-10}$ and the K_a of HF is $6.8 imes10^{-4}$.

S Thought for 4 seconds ~

To determine the pH of a 0.10 M solution of ammonium fluoride (NH₄F), we'll need to consider the acid-base properties of its constituent ions when dissolved in water.

Step 1: Dissociation of NH₄F

 $m NH_4F
ightarrow
m NH_4^+ + F^-$

Both ${
m NH}_4^+$ and ${
m F}^-$ can react with water, affecting

Large language models

Segment Anything Model

Check out our interactive 4D demo!

Dynamic Reconstruction (MonST3R)

Structure-preserving learning Symmetries

Invariance

Maurice Weiler

Equivariance

Symmetries

Maurice Weiler & Gabriel Cesa

Group-CNN

Structure-preserving learning Dynamics

Neural ODE (Chen et al.)

Path Sampling (Du et al.)

Structure-preserving learning Applications

- Architectures with symmetry-preserving guarantees
- Efficient representation learning
 - Data efficiency
 - Compute efficiency*
- Architectures leveraging known dynamics

* Brehmer et al., Does Equivariance Matter at Scale?

ClimODE

N-body dynamics

Neural Descriptor Fields

vergence $\nabla \cdot \mathbf{v}_{\theta}$ The second second

Structure-preserving learning Papers

No.	Paper
1	Group Equivariant Convolutional Ne
2	3D Steerable CNNs: Learning Rotat
3	SE(3)-Transformers: 3D Roto-Trans
4	Equivariance with Learned Canonica
5	Spherical Channels for Modeling Ato
6	E(3)-equivariant graph neural netwo
7	Geometric Algebra Transfromers
8	Neural Ordinary Differential Equation
9	Artificial Kuramoto Oscillatory Neuro
10	SE(3)-Stochastic Flow Matching for
11	Navigating Chemical Space with Lat
12	Action Matching: Learning Stochasti

https://cvg.cit.tum.de/teaching/ss2025/dl-equi-dynam

works 🖸		
onally Equivariant Features in Volumetric Data 🖸		
ation Equivariant Attention Networks		
lization Functions		
mic Interactions		
ks for data-efficient and accurate interatomic potentials		
is 🖸		
ns 🖸		
Protein Backbone Generation		
ent Flows		
Dynamics from Samples		

Logistics*

- Plan to have 10 12 participants (through TUM Matching process)
 - Drop me an email so I don't miss your application!
- In-person session every other week
 - Tuesdays 14:30 16:30
- Two paper presentations in every session
 - 30 35 minutes presentation
 - 10 minutes discussion
- One early 'catch-up' session to review common DL models

Evaluation

- Major component (75%)
 - Paper presentation (40%)
 - Technical report (not a summary) (35%)
- Minor components (25%)
 - One paragraph paper summaries before every session (15%)
 - In-class participation (10%)

Warning

- First offering of the seminar
 - Expect some rough edges!
- Papers are dense in theory
 - ..which also makes it interesting
- I'm not an expert on these topics

Contact

- <u>karnik.ram@tum.de</u>
- CIT, 02.08.038
- https://cvg.cit.tum.de/teaching/ss2025/dl-equi-dynam