

Spherical Channels for Modeling Atomic Interactions, Zitnick et al.

Jean-Pasqual Sindermann

Technische Universität München

Selected Topics in Deep Learning –

Equivariance & Dynamics

Munich, 17. June 2025

Structure

- Introduction
- Spherical Harmonics
- Message Passing in Spherical Channel Networks (SCN)
- Energy and Force Prediction
- Equivariance Considerations
- Paper results
- Additional discussion points

Lets develop a new catalyst/chemical/material, Ideally to tackle the climate change!

How do we do this?

Atomic Relaxation

- Prediction of Atomic Energy and Forces is key
- Mathematical perfect description: Density Functional Theory
 - Complicated to calculate/approximate
 - Takes ages
- Can we speed things up?

- Prediction of Atomic Energy and Forces is key
- Mathematical perfect description: Density Functional Theory
 - Complicated to calculate/approximate
 - Takes ages
- Can we speed things up?
 - Solution to everything: Machine Learning (and Neural Networks)
- Energy: Invariant to Rotation (and other Transformations)
- Forces: Equivariant to Rotation (and other Transformations)
 - Per Atom Forces

Spherical Harmonics

Spherical Harmonics

$$Y_{2,-2}(\theta,\phi) = \sqrt{\frac{15}{16\pi}}\sin(2\phi)\sin^2\theta$$

$$Y_{1,-1}(\theta,\phi) = \sqrt{\frac{3}{4\pi}}\sin\phi\sin\theta \qquad Y_{2,-1}(\theta,\phi) = \sqrt{\frac{15}{4\pi}}\sin\phi\sin\theta\cos\theta$$

$$Y_{1,0}(\theta,\phi) = \sqrt{\frac{3}{4\pi}}\cos\theta \qquad Y_{2,0}(\theta,\phi) = \sqrt{\frac{5}{16\pi}}(3\cos^2\theta - 1)$$

$$Y_{1,1}(\theta,\phi) = \sqrt{\frac{3}{4\pi}}\cos\phi\sin\theta \qquad Y_{2,1}(\theta,\phi) = \sqrt{\frac{15}{4\pi}}\cos\phi\sin\theta\cos\theta$$

$$Y_{2,2}(\theta,\phi) = \sqrt{\frac{15}{16\pi}}\cos(2\phi)\sin^2\theta$$

Spherical Channel Networks

- Graph Neural Networks
 - Atoms are Nodes
 - Edges are Neighbours
- Embeddings are Coefficients of Spherical Harmonics
- Each Atom encodes a function on a sphere
 - with multiple channels like CNNs
- Messages calculated per Edge
 - rotate edge to align with Z-Axis
 - compute message value
 - rotate back

Message Passing

Message Passing

Message Passing

- $m_t^{(k+1)} = \sum_s m_{st}^{(k+1)}$
- 3 layer 1x1 CNN
- SiLU activation per layer

Energy and Force Prediction

Energy and Force Prediction

$$E = \sum_{i} \int \mathbf{F}_{energy} \left(s_{i}^{(K)}(\hat{\mathbf{r}}) \right) d\hat{\mathbf{r}},$$

F_{energy} is three layer FC with SiLU activations

$$\mathbf{f}_i = \int \hat{\mathbf{r}} \mathbf{F}_{force} \left(s_i^{(K)}(\hat{\mathbf{r}}) \right) d\hat{\mathbf{r}},$$

F_{force} is three layer FC

?daer ot uoy sekat siht seod gnol woH

How long does this takes you to read?

Are SCNs equivariant? Why or why not?

- Embeddings are coefficients of Spherical Harmonics
 - Rotation can be achieved with Wigner D-matrices

- Embeddings are coefficients of Spherical Harmonics
 - Rotation can be achieved with Wigner D-matrices
- Message Passing
 - Edges are rotated to align with Z-Axis
 - Roll is unknown and randomly sampled in practice
 - Only harmonics of order m=0 are strictly equivariant
 - Possible: Average over different angles similar to G-CNNs

- Embeddings are coefficients of Spherical Harmonics
 - Rotation can be achieved with Wigner D-matrices
- Message Passing
 - Edges are rotated to align with Z-Axis
 - Projection onto 2D-Grid and non-linearities
 - non-linearities may add frequencies higher than degree of L
 - grid-resolution / sampling rate has to be high enough

- Embeddings are coefficients of Spherical Harmonics
 - Rotation can be achieved with Wigner D-matrices
- Message Passing
 - Edges are rotated to align with Z-Axis
 - Projection onto 2D-Grid and non-linearities
- Energy and Force prediction
 - Fully connected layers with activation
 - Integrated (numerically) over the sphere
 - neglectable effect

			ergy	Force			
Model	Activation	MAE [meV]	MAD [meV]	MAE Force [meV/Å]	MAD [meV/Å]		
SCN 3-Layer	SiLU	302	0.95	24.6	0.05		

Rotational Error of Energy/Force Prediction

Model	Activation % MAD				
SCN 1-Layer	Linear	0.0%			
SCN 1-Layer	SiLU	4.6%			
SCN 2-Layer	SiLU	6.7%			
SCN 1-Layer	ReLU	4.2%			
SCN 2-Layer	ReLU	6.8%			

Rotational Error of Activations

		Energy								
Model		MAE [meV] ↓	No AMI MAD [meV] ↓	P % Error↓	AMP MAD [meV] ↓	% Error ↓				
SCN	m = 0	307	7.9	2.6%	12.4	4.0%				
SCN	$m \in [-1, 1]$	302	39.1	12.9%	42.8	14.2%				
SCN	$m \in [-1, 1]$, No 1x1 conv	313	30.3	9.7%	37.3	11.9%				
SCN	$m \in [-1, 1], 4$ -tap	294	6.9	2.3%	19.4	6.6%				
		Force								
		I	No AM	AMP						
Model		MAE [meV/Å] ↓	MAD [meV/Å]↓	% Error↓	MAD [meV/Å] ↓	% Error↓				
SCN	m = 0	26.5	0.4	1.5%	0.9	3.6%				
SCN	$m \in [-1, 1]$	24.6	3.1	12.6%	4.4	17.9%				
SCN	$m \in [-1, 1]$, No 1x1 conv	26.2	0.5	2.0%	0.6	2.2%				
SCN	$m \in [-1, 1], 4$ -tap	23.1	0.4	1.7%	2.6	11.3%				

Rotational Error for SCN

Results

OC20 2M Validation

							S2EF			IS2RE	
Model				Samples / GPU sec.	Energy MAE [meV]↓	Force MAE [meV/Å] ↓	Force Cos	EFwT [%] †	Energy MAE [meV]↓	EwT [%]↑	
Median					3					(c	
SchNet [38]						1400	78.3	0.109	0.00	-	-
DimeNet++ [12]						805	65.7	0.217	0.01	-	+
SpinConv [41]						406	36.2	0.479	0.13	-	-
GemNet-dT [14]					25.8	358	29.5	0.557	0.61	438	_
GemNet-OC 15					18.3	286	25.7	0.598	1.06	407	75
	\boldsymbol{L}	# layers	H	# batch							
SCN m = 0	6	16	1024	96	7.4	300	25.7	0.600	0.96	394	9.6
SCN m = 0	8	16	1024	64	4.8	296	25.3	0.608	1.01	389	9.9
SCN	6	16	1024	96	5.9	287	22.8	0.623	1.22	371	10.5
SCN	8	16	1024	96	3.5	283	22.7	0.627	1.22	364	11.3
SCN 4-tap	6	16	1024	64	2.6	282	22.2	0.648	1.37	378	10.7
SCN 4-tap 2-band	6	16	1024	64	2.3	279	21.9	0.650	1.46	373	11.0

Results on the OC20 2M training dataset

Results

OC20 Test

		Ī	S2EF				IS2RS		IS2RE	
		Train	Energy MAE	Force MAE	Force Cos	EFwT	AFbT	ADwT	Energy MAE	
Model	#Params	time	meV↓	[meV/Å]↓	\uparrow	[%] ↑	[%] ↑	[%] ↑	meV↓	
Median	(2258	84.4	0.016	0.01	-	-	-	
					Train OC20 All					
SchNet [38, 6]	9.1M	194d	540	54.7	0.302	0.00	-	14.4	764	
PaiNN [36]	20.1M	67d	341	33.1	0.491	0.46	11.7	48.5	471	
DimeNet++-L-F+E [12, 6]	10.7M	1600d	480	31.3	0.544	0.00	21.7	51.7	559	
SpinConv (direct-forces) [41]	8.5M	275d	336	29.7	0.539	0.45	16.7	53.6	437	
GemNet-dT [14]	32M	492d	292	24.2	0.616	1.20	27.6	58.7	400	
GemNet-OC [15]	39M	336d	233	20.7	0.666	2.50	35.3	60.3	355	
SCN L=8 K=20	271M	645d	244	17.7	0.687	2.59	40.3	67.1	330	
					Train OC2	0 All + N	ID			
GemNet-OC-L-E [15]	56M	640d	230	21.0	0.665	2.80	-	-	-	
GemNet-OC-L-F [15]	216M	765d	241	19.0	0.691	2.97	40.6	60.4	==	
GemNet-OC-L-F+E [15]	(<u>4</u>	-	(-)	-	-	-	-	-	348	
SCN L=6 K=16 4-tap 2-band	168M	414d	228	17.8	0.696	2.95	43.3	64.9	328	
SCN L=8 K=20	271M	1280d	237	17.2	0.698	2.89	43.6	67.5	321	

Comparison of SCN to existing GNN models when trained on the All or All+MD datasets.

Results

BENEFITS:

- State-of-the-art performance
- Very large expressive capacity and sample efficient
- One model for Energy and Force prediction

LIMITATIONS:

- Overfitting with small data
- Very slow for enforced energy conservation
- Limited use of L > 8
- Equivariance challenges for |m| > 2

Questions and Discussion?

Discussion

What are the differences to TFNs?

- both rely on Spherical Harmonics
- TFN constrain architecture (filters, non-linearities, etc.) to enforce equivariance
- TFN uses harmonics as filters for pointwise convolutions
- less/no constraints for SCNs as they apply non-linearities on rotated embeddings and projected 2D grid

Discussion

How are Edge Distances embedded?

- 1D Array of evenly spaced Gaussian Radial Basis Functions
 - every 0.02 Å from 0 to 8 Å with σ = 0.04
- plus FC layers

$$[\mathrm{RBF}_1(d_{ij}),\mathrm{RBF}_2(d_{ij}),\ldots,\mathrm{RBF}_K(d_{ij})]$$

$$\mathrm{RBF}_k(d) = \exp\left(-\gamma(d-\mu_k)^2\right)$$

Thank you for your attention!

References

- Paper used for information and graphics: Spherical Channel Networks for Modeling Atomic Interactions, Zitnick et al. https://arxiv.org/pdf/2006.10503
- Paper presentation used for additional graphics: Spherical Channel Networks for Modeling Atomic Interactions, Zitnick et al., NeurIPS 2022 slideslive.com/38989937/spherical-channels-for-modeling-atomic-interactions