Equivariant Spatio-Temporal Attentive Graph Networks for Physical Dynamics

Celia Tundidor Centeno

Previously...

What are we discussing today?

How can we use machine learning to simulate physical systems with **high fidelity to their dynamics**?

Contexts of application:

- topics: molecular dynamics, protein structure prediction, robotics...
- levels: macro, protein, smaller molecules...

Foundational concepts: Graph Neural Networks (GNNs)

Naturally fit for physical system representation

- Unit elements as nodes (e.g., atoms)
- Relations as edges (e.g., chemical bonds)
- Latent interactions as message passing between these nodes with edges

Foundational concepts: Equivariance

Output reflects a predictable transformation equivalent to that of the input. Physical consistence irrespective of the coordinate system and view

State of the Art: equivariant GNNs

Spatially: generalising GNNs to fit the symmetry of our world

Temporally: frame-to-frame forecasting

E.g.:

- Tensor-Field Networks (TFN)
- SE(3)-Transformer
- LieTransformer and LieConv
- E(n)-equivariant GNNs (EGNN)
- Equivariant Graph Mechanics Networks (GMN)

The problem: the Markovian assumption

"The future state only depends on the current state, independent of all other past states"

The problem: the Markovian assumption

"The future state only depends on the current state, independent of all other past states"

Previous methods rely on this:

- A single input: system's conformation at a single frame.
- A fixed time step: they predict the future after a fixed time interval (frame-to-frame)

Why is the Markovian assumption problematic?

What if there are unobserved objects interacting with the system?

- Missed by the last frame
- Untracked

What if the effects induced by other objects are not constant or linear?

Why is the Markovian assumption problematic?

For molecular dynamics in particular:

What about solvents (untracked object)?

Addressing Non-Markovian Dynamics

We define a **past period** (to be taking as input)

Idea: if the past period is sufficiently long, non-Markovian behaviour can be recovered

Addressing Non-Markovian Dynamics

We can also recover periodic motion (e.g. periodic thermal vibration)

Addressing Non-Markovian Dynamics

We can therefore use Spatio-Temporal Graph Neural Networks (STGNNs)...but they are unfit for Euclidean symmetry and physical laws

- traditional use case not on physical modelling (e.g. traffic forecasting)
- no 3D geometric equivariance

Enter ESTAG

Equivariant Spatio-Temporal Attentive Graph Networks (ESTAG):

- capturing non-Markovian behaviour (based on STGNNs)
- making STGNNs equivariant (for Euclidean symmetry)

ESTAG components

- Equivariant Discrete Fourier Transform (EDFT): extracts periodic patterns
- 2. Equivariant Spatial Module (ESM): passes spatial messages.
- 3. Equivariant Temporal Module (ETM): aggregates temporal messages using forward attention and equivariant pooling

Equivariant Discrete Fourier Transform (EDFT)

Fourier Transform helps us understand the frequency domain

-> periodicity (node-wise temporal dynamics for the global context). c_i is the frequency amplitude of node i.

We can later use this information to check node cross-correlation (A) A and c are E(3)-invariant!

$$ec{f_i}(k) = \sum_{t=0}^{T-1} e^{-i'rac{2\pi}{T}kt} \; \left(ec{x}_i(t) - \overline{ec{x}}(t)
ight)$$
 $oldsymbol{c}_i(k) = w_k(oldsymbol{h}_i) \|ec{f_i}(k)\|^2$ $oldsymbol{Aspirin}$ ol

Equivariant Spatial Module (ESM)

Encoding and passing the spatial geometry of each graph through each layer

EGNN + EDFT features:

- + correlation (Aij) to evaluate global temporal connections
- + amplitude (ci) to update hidden features at each node

Equivariant Spatial Module (ESM)

Process: compute messages, update hidden features, update positions

$$egin{aligned} m{m}_{ij} &= \phi_m \left(m{h}_i^{(l)}(t), m{h}_j^{(l)}(t), \| m{ec{x}}_{ij}^{(l)}(t) \|^2, m{A}_{ij}
ight), \ m{h}_i^{(l+1)}(t) &= m{h}_i^{(l)}(t) + \phi_h \left(m{h}_i^{(l)}(t), m{c}_i, \sum_{j \neq i} m{m}_{ij}
ight), \ m{ec{a}}_i(t) &= rac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} m{ec{x}}_{ij}^{(l)}(t) \phi_x(m{m}_{ij}), \ m{ec{x}}_i^{(l+1)}(t) &= m{ec{x}}_i^{(l)}(t) + m{ec{a}}_i(t), \end{aligned}$$

note that these operations do not disturb equivariance

Equivariant Temporal Module (ETM)

Modelling self-correspondence with an attention mechanism

Forward temporal attention: we only rely on the past

Equivariant pooling

Equivariant Temporal Module (ETM)

Modelling self-correspondence with an attention mechanism

Forward temporal attention: we only rely on the past

Equivariant pooling: aggregates spatial and temporal information

$$\alpha_i^{(l)}(ts) = \frac{\exp(\boldsymbol{q}_i^{(l)}(t)^\top \boldsymbol{k}_i^{(l)}(s))}{\sum_{s=0}^t \exp(\boldsymbol{q}_i^{(l)}(t)^\top \boldsymbol{k}_i^{(l)}(s))}, \quad \text{attention weight}$$

$$m{h}_i^{(l+1)}(t) = m{h}_i^{(l)}(t) + \sum_{s=0}^t lpha_i^{(l)}(ts) m{v}_i^{(l)}(s), \quad ext{hidden feature}$$

$$\vec{\boldsymbol{x}}_i^{(l+1)}(t) = \vec{\boldsymbol{x}}_i^{(l)}(t) + \sum_{s=0}^{t} \alpha_i^{(l)}(ts) \vec{\boldsymbol{x}}_i^{(l)}(ts) \phi_x(\boldsymbol{v}_i^{(l)}(s)),$$

Equivariant Temporal Pooling

Equivariant pooling: apply a linear transformation to the updated coordinates

$$ec{m{x}}_i^*(T) = \hat{m{X}}_i m{w} + ec{m{x}}_i^{(L)}(T-1),$$
 ESM ETL ESM ETL ...

$$\mathcal{L} = \sum_{i=1}^{N} \| \vec{x}_i(T) - \vec{x}_i^*(T) \|_2^2.$$

Architecture recap

Input: historical series of spatio-temporal graphs {Gt} from time t=0 to T-1

Equivariant Discrete Fourier Transform (EDFT): processes historical trajectory for each node. Extracts equivariant frequency features-> invariant node features (c) and adjacency matrix (A).

Stacked Modules: computes spatial and temporal relationships. L layers of alternating equivariant components (ESM, ETM)

Equivariant Temporal Pooling: pooling layer to combine time and space dependencies

Output: position of each node at time T

Architecture recap

EDFT:

$$egin{aligned} ec{m{f}_i}(k) &= \sum_{t=0}^{T-1} e^{-i' rac{2\pi}{T} k t} \, \left(ec{m{x}}_i^lpha(t) - \overline{m{x}}^lpha(t)
ight), \ m{A}_{ij}(k) &= w_k(m{h}_i) w_k(m{h}_j) |\langle ec{m{f}_i}(k), ar{m{f}_j}(k)
angle|, \ m{c}_i(k) &= w_k(m{h}_i) \|ec{m{f}_i}(k)\|^2. \end{aligned}$$

Architecture recap

ESM:

$$\begin{aligned} \boldsymbol{m}_{ij} &= \phi_m \left(\boldsymbol{h}_i^{(l)}(t), \boldsymbol{h}_j^{(l)}(t), \frac{(\vec{\boldsymbol{X}}_{ij}^{(l)}(t))^\top \vec{\boldsymbol{X}}_{ij}^{(l)}(t)}{\|(\vec{\boldsymbol{X}}_{ij}^{(l)}(t))^\top \vec{\boldsymbol{X}}_{ij}^{(l)}(t)\|_F}, \boldsymbol{A}_{ij} \right), \\ \boldsymbol{h}_i^{(l+1)}(t) &= \phi_h \left(\boldsymbol{h}_i^{(l)}(t), \boldsymbol{c}_i(k), \sum_{j \neq i} \boldsymbol{m}_{ij} \right), \\ \vec{\boldsymbol{A}}_i^{(l)}(t) &= \frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} \vec{\boldsymbol{X}}_{ij}^{(l)}(t) \phi_{\boldsymbol{X}}(\boldsymbol{m}_{ij}), \\ \vec{\boldsymbol{X}}_i^{(l+1)}(t) &= \vec{\boldsymbol{X}}_i^{(l)}(t) + \vec{\boldsymbol{A}}_i^{(l)}(t). \end{aligned}$$

ETM:

$$\begin{split} &\alpha_i^{(l)}(ts) = \frac{\exp(\boldsymbol{q}_i^{(l)}(t)^\top \boldsymbol{k}_i^{(l)}(s))}{\sum_{s=0}^t \exp(\boldsymbol{q}_i^{(l)}(t)^\top \boldsymbol{k}_i^{(l)}(s))}, \\ &\boldsymbol{h}_i^{(l+1)}(t) = \boldsymbol{h}_i^{(l)}(t) + \sum_{s=0}^t \alpha_i^{(l)}(ts)\boldsymbol{v}_i^{(l)}(s), \\ &\boldsymbol{\vec{X}}_i^{(l+1)}(t) = \boldsymbol{\vec{X}}_i^{(l)}(t) + \sum_{s=0}^t \alpha_i^{(l)}(ts) \ \boldsymbol{\vec{X}}_i^{(l)}(ts) \phi_{\boldsymbol{X}}(\boldsymbol{v}_i^{(l)}(s)), \end{split}$$

where

$$egin{aligned} oldsymbol{q}_i^{(l)}(t) &= \phi_q \left(oldsymbol{h}_i^{(l)}(t)
ight), \ oldsymbol{k}_i^{(l)}(t) &= \phi_k \left(oldsymbol{h}_i^{(l)}(t)
ight), \ oldsymbol{v}_i^{(l)}(t) &= \phi_v \left(oldsymbol{h}_i^{(l)}(t)
ight). \end{aligned}$$

Equivariance details

Theorem A.1. We denote ESTAG as $\vec{X}(T) = \phi\left(\{(H(t), g \cdot \vec{X}(t), A)\}_{t=0}^{T-1}\right)$, then ϕ is E(3)-equivariant.

Proof. **1.** We firstly prove that EDFT is E(3)-equivariant.

$$egin{aligned} oldsymbol{O} ec{oldsymbol{f}_i}(k) &= \sum_{t=0}^{T-1} e^{-i'rac{2\pi}{T}kt} \, \left(oldsymbol{O} ec{oldsymbol{x}}_i(t) + oldsymbol{b} - \overline{oldsymbol{O} ec{oldsymbol{x}}}(t) + oldsymbol{b}
ight), \ oldsymbol{A}_{ij}(k) &= w_k(oldsymbol{h}_i) w_k(oldsymbol{h}_j) |\langle oldsymbol{O} ec{oldsymbol{f}}_i(k), oldsymbol{O} ec{oldsymbol{f}}_j(k)
angle|, \ oldsymbol{c}_i(k) &= w_k(oldsymbol{h}_i) \|oldsymbol{O} ec{oldsymbol{f}}_i(k)\|^2. \end{aligned}$$

2. We secondly prove the E(3)-equivariance of ESM.

$$egin{aligned} m{m}_{ij} &= \phi_m \left(m{h}_i^{(l)}(t), m{h}_j^{(l)}(t), \|m{O} m{ec{x}}_{ij}^{(l)}(t)\|^2, m{A}_{ij}
ight), \ m{h}_i^{(l+1)}(t) &= \phi_h \left(m{h}_i^{(l)}(t), m{c}_i(k), \sum_{j \neq i} m{m}_{ij}
ight), \ m{O} m{ec{a}}_i(t) &= rac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} m{O} m{ec{x}}_{ij}^{(l)}(t) \phi_x(m{m}_{ij}), \ m{O} m{ec{x}}_i^{(l+1)}(t) + m{b} &= m{O} m{ec{x}}_i^{(l)}(t) + m{b} + m{O} m{ec{a}}_i^{(l+1)}(t). \end{aligned}$$

Equivariance details

3. We then prove that ETM is E(3)-equivariant.

$$\begin{split} \boldsymbol{q}_{i}^{(l)}(t) &= \phi_{q} \left(\boldsymbol{h}_{i}^{(l)}(t) \right), \\ \boldsymbol{k}_{i}^{(l)}(t) &= \phi_{k} \left(\boldsymbol{h}_{i}^{(l)}(t) \right), \\ \boldsymbol{v}_{i}^{(l)}(t) &= \phi_{v} \left(\boldsymbol{h}_{i}^{(l)}(t) \right), \\ \boldsymbol{\alpha}_{i}^{(l)}(ts) &= \frac{\exp(\boldsymbol{q}_{i}^{(l)}(t)^{\top} \boldsymbol{k}_{i}^{(l)}(s))}{\sum_{s=0}^{t} \exp(\boldsymbol{q}_{i}^{(l)}(t)^{\top} \boldsymbol{k}_{i}^{(l)}(s))}, \\ \boldsymbol{h}_{i}^{(l+1)}(t) &= \boldsymbol{h}_{i}^{(l)}(t) + \sum_{s=0}^{t} \alpha_{i}^{(l)}(ts) \boldsymbol{v}_{i}^{(l)}(s), , \\ \boldsymbol{O} \vec{\boldsymbol{x}}_{i}^{(l+1)}(t) + \boldsymbol{b} &= \boldsymbol{O} \vec{\boldsymbol{x}}_{i}^{(l)}(t) + \boldsymbol{b} + \sum_{s=0}^{t} \alpha_{i}^{(l)}(ts) \boldsymbol{O} \vec{\boldsymbol{x}}_{i}^{(l)}(ts) \phi_{x}(\boldsymbol{v}_{i}^{(l)}(s)). \end{split}$$

4. We finally prove that the linear pooling is equivariant:

$$O\vec{x}_{i}^{*}(T) + b = O\hat{X}_{i}w + O\vec{x}_{i}^{(L)}(T-1) + b.$$

Experiments

Testing on three datasets for the different levels:

Molecular: MD17, trajectories of small molecules (e.g., Aspirin, Benzene, Ethanol) generated by Molecular Dynamics simulation. External temperature and pressure are unobserved (non-Markovian behaviour)

Protein-level: AdK equilibrium trajectory dataset (protein dynamics). The dynamics of water and ions are unobserved (non-Markovian behaviour)

Macro-level: CMU Motion Capture Database (human motion trajectories) (e.g., walking, basketball). Environmental states are unobserved (non-Markovian behaviour)

Experimental results: molecular

Experimental results: molecular

Table 1: Prediction error $(\times 10^{-3})$ on MD17 dataset. Results averaged across 3 runs. We do not display the standard deviation due to its small value.

	ASPIRIN	BENZENE	ETHANOL	MALONALDEHYDE	NAPHTHALENI	E SALICYLIC	TOLUENE	URACIL
PT-s	15.579	4.457	4.332	13.206	8.958	12.256	6.818	10.269
$\operatorname{PT-}m$	9.058	2.536	2.688	6.749	6.918	8.122	5.622	7.257
$\operatorname{PT-}t$	0.715	0.114	0.456	0.596	0.737	0.688	0.688	0.674
EGNN-s	12.056	3.290	2.354	10.635	4.871	8.733	3.154	6.815
$EGNN ext{-}m$	6.237	1.882	1.532	4.842	3.791	4.623	2.516	3.606
EGNN-t	0.625	0.112	0.416	0.513	0.614	0.598	0.577	0.568
ST_TFN	0.719	0.122	0.432	0.569	0.688	0.684	0.628	0.669
ST_GNN	1.014	0.210	0.487	0.664	0.769	0.789	0.713	0.680
ST_SE(3)TR	0.669	0.119	0.428	0.550	0.625	0.630	0.591	0.597
ST_EGNN	0.735	0.163	0.245	0.427	0.745	0.687	0.553	0.445
EQMOTION	0.721	0.156	0.476	$\overline{0.600}$	0.747	0.697	0.691	0.681
STGCN	0.715	0.106	0.456	0.596	0.736	0.682	0.687	0.673
AGL-STAN	0.719	0.106	0.459	0.596	<u>0.601</u>	0.452	0.683	0.515
ESTAG	0.063	0.003	0.099	0.101	0.068	0.047	0.079	0.066

Experimental results: protein and macro

M ETHOD	MSE	TIME(S)
PT-s	3.260	2.5
$\operatorname{PT-}m$	3.302	
$\operatorname{PT-}t$	2.022	-
EGNN-s	3.254	1.062
EGNN-m	3.278	1.088
EGNN-t	1.983	1.069
ST_GNN	1.871	2.769
ST_GMN	1.526	4.705
ST_EGNN	1.543	4.705
STGCN	1.578	1.840
AGL-STAN	1.671	1.478
ESTAG	1.471	6.876

M ETHOD	WALK	BASKETBALL
PT-s	329.474	886.023
$\operatorname{PT-}m$	127.152	413.306
$\operatorname{PT-}t$	3.831	15.878
EGNN-s	63.540	749.486
$\operatorname{EGNN} olimits_m$	32.016	335.002
EGNN-t	0.786	12.492
ST_GNN	0.441	15.336
ST_TFN	0.597	13.709
ST_SE(3)TR	0.236	13.851
ST_EGNN	0.538	13.199
EQMOTION	1.011	4.893
STGCN	0.062	4.919
AGL-STAN	0.037	5.734
ESTAG	0.040	0.746

Table 4: Ablation studies ($\times 10^{-3}$) on MD17 dataset. Results averaged across 3 runs.

Ablation studies

	Aspirin	Benzene	Ethanol	Malonaldehyde	Naphthalene	Salicylic	Toluene	Uracil
ESTAG	0.063	0.003	0.099	0.101	0.068	0.047	0.079	0.066
w/o EDFT	0.079	0.003	0.108	0.148	0.104	0.145	0.102	0.063
w/o Attention	0.087	0.004	0.104	0.112	0.129	0.095	0.097	0.078
w/o Equivariance	0.762	0.114	0.458	0.604	0.738	0.698	0.690	0.680
w/o Temporal	0.084	0.003	0.111	0.139	0.141	0.098	0.153	0.071

Table 5: MSE on Ethanol w.r.t. the number of layers L.

$\overline{}$	1	2	3	4	5	6
MSE ($\times 10^{-4}$)	1.25	0.990	1.096	1.022	1.042	1.028

Without EDFT: considerably worse performance. wk (learnable) shown to be beneficial as a spectral filter

Without attention: slightly worse performance

Without equivariance: considerably worse performance

Without temporal pooling: slightly worse performance

Paper analysis: contributions and advantages

- Time: modelling non-Markovian features, capturing periodicity,
 via EDFT and attention mechanism
- Space: Euclidean symmetry
- Good overall performance

Paper analysis: limitations and criticism

- Limited equivariance: missing embedded physical laws, e.g. no conservation of energy
- Limited benchmarks
- Inconsistent baseline comparisons (due to modifications)
- Ablation study interpretations (limited time effects?)
- Visualization as cherry-picking?

Thanks for listening!

Questions?