# Equivariant Spatio-Temporal Attentive Graph Networks for Physical Dynamics

Celia Tundidor Centeno



# Previously...

#### What are we discussing today?

How can we use machine learning to simulate physical systems with **high fidelity to their dynamics**?

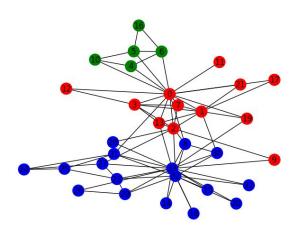
#### Contexts of application:

- topics: molecular dynamics, protein structure prediction, robotics...
- levels: macro, protein, smaller molecules...

# Foundational concepts: Graph Neural Networks (GNNs)

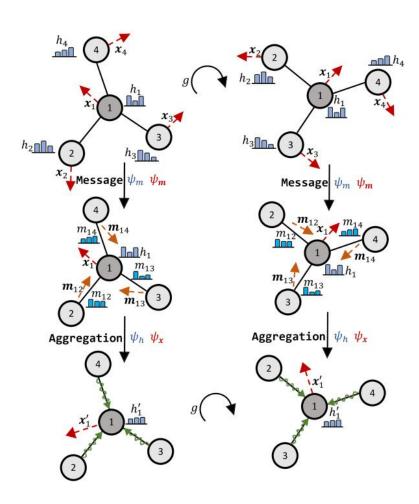
Naturally fit for physical system representation

- Unit elements as nodes (e.g., atoms)
- Relations as edges (e.g., chemical bonds)
- Latent interactions as message passing between these nodes with edges



### Foundational concepts: Equivariance

Output reflects a predictable transformation equivalent to that of the input. Physical consistence irrespective of the coordinate system and view



#### State of the Art: equivariant GNNs

Spatially: generalising GNNs to fit the symmetry of our world

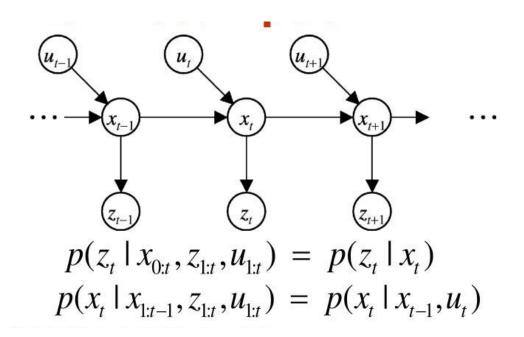
Temporally: frame-to-frame forecasting

#### E.g.:

- Tensor-Field Networks (TFN)
- SE(3)-Transformer
- LieTransformer and LieConv
- E(n)-equivariant GNNs (EGNN)
- Equivariant Graph Mechanics Networks (GMN)

### The problem: the Markovian assumption

"The future state only depends on the current state, independent of all other past states"



#### The problem: the Markovian assumption

"The future state only depends on the current state, independent of all other past states"

#### Previous methods rely on this:

- A single input: system's conformation at a single frame.
- A fixed time step: they predict the future after a fixed time interval (frame-to-frame)

#### Why is the Markovian assumption problematic?

What if there are unobserved objects interacting with the system?

- Missed by the last frame
- Untracked

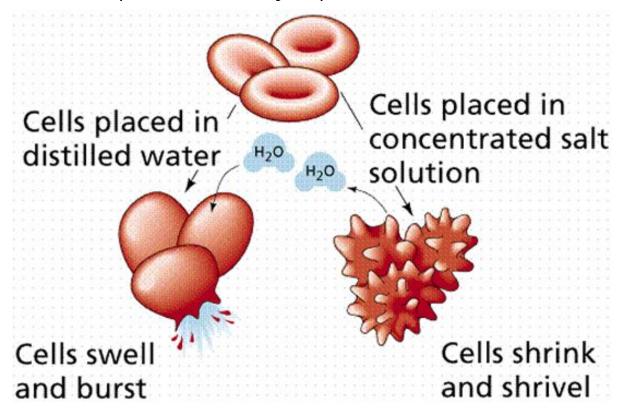
What if the effects induced by other objects are not constant or linear?



### Why is the Markovian assumption problematic?

For molecular dynamics in particular:

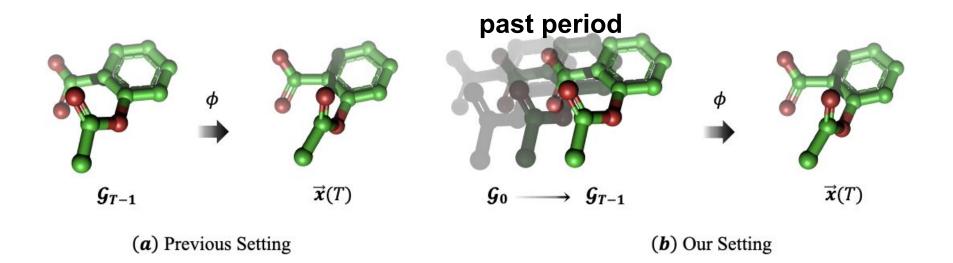
What about solvents (untracked object)?



#### Addressing Non-Markovian Dynamics

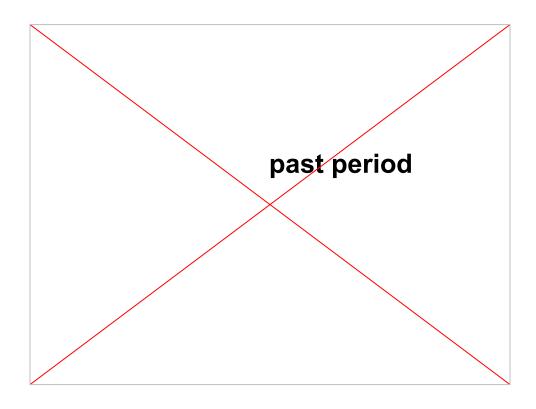
We define a **past period** (to be taking as input)

Idea: if the past period is sufficiently long, non-Markovian behaviour can be recovered



### Addressing Non-Markovian Dynamics

We can also recover periodic motion (e.g. periodic thermal vibration)



#### Addressing Non-Markovian Dynamics

We can therefore use Spatio-Temporal Graph Neural Networks (STGNNs)...but they are unfit for Euclidean symmetry and physical laws

- traditional use case not on physical modelling (e.g. traffic forecasting)
- no 3D geometric equivariance

#### **Enter ESTAG**

Equivariant Spatio-Temporal Attentive Graph Networks (ESTAG):

- capturing non-Markovian behaviour (based on STGNNs)
- making STGNNs equivariant (for Euclidean symmetry)

#### **ESTAG** components

- Equivariant Discrete Fourier Transform (EDFT): extracts periodic patterns
- 2. Equivariant Spatial Module (ESM): passes spatial messages.
- 3. Equivariant Temporal Module (ETM): aggregates temporal messages using forward attention and equivariant pooling

### Equivariant Discrete Fourier Transform (EDFT)

Fourier Transform helps us understand the frequency domain

-> periodicity (node-wise temporal dynamics for the global context). c\_i is the frequency amplitude of node i.

We can later use this information to check node cross-correlation (A) A and c are E(3)-invariant!

$$ec{f_i}(k) = \sum_{t=0}^{T-1} e^{-i'rac{2\pi}{T}kt} \; \left(ec{x}_i(t) - \overline{ec{x}}(t)
ight)$$
  $oldsymbol{c}_i(k) = w_k(oldsymbol{h}_i) \|ec{f_i}(k)\|^2$   $oldsymbol{Aspirin}$   $ol$ 

### Equivariant Spatial Module (ESM)

Encoding and passing the spatial geometry of each graph through each layer

#### EGNN + EDFT features:

- + correlation (Aij) to evaluate global temporal connections
- + amplitude (ci) to update hidden features at each node

## Equivariant Spatial Module (ESM)

Process: compute messages, update hidden features, update positions

$$egin{aligned} m{m}_{ij} &= \phi_m \left( m{h}_i^{(l)}(t), m{h}_j^{(l)}(t), \| m{ec{x}}_{ij}^{(l)}(t) \|^2, m{A}_{ij} 
ight), \ m{h}_i^{(l+1)}(t) &= m{h}_i^{(l)}(t) + \phi_h \left( m{h}_i^{(l)}(t), m{c}_i, \sum_{j \neq i} m{m}_{ij} 
ight), \ m{ec{a}}_i(t) &= rac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} m{ec{x}}_{ij}^{(l)}(t) \phi_x(m{m}_{ij}), \ m{ec{x}}_i^{(l+1)}(t) &= m{ec{x}}_i^{(l)}(t) + m{ec{a}}_i(t), \end{aligned}$$

note that these operations do not disturb equivariance

## Equivariant Temporal Module (ETM)

Modelling self-correspondence with an attention mechanism

Forward temporal attention: we only rely on the past

**Equivariant pooling** 

# Equivariant Temporal Module (ETM)

Modelling self-correspondence with an attention mechanism

Forward temporal attention: we only rely on the past

Equivariant pooling: aggregates spatial and temporal information

$$\alpha_i^{(l)}(ts) = \frac{\exp(\boldsymbol{q}_i^{(l)}(t)^\top \boldsymbol{k}_i^{(l)}(s))}{\sum_{s=0}^t \exp(\boldsymbol{q}_i^{(l)}(t)^\top \boldsymbol{k}_i^{(l)}(s))}, \quad \text{attention weight}$$

$$m{h}_i^{(l+1)}(t) = m{h}_i^{(l)}(t) + \sum_{s=0}^t lpha_i^{(l)}(ts) m{v}_i^{(l)}(s), \quad ext{hidden feature}$$

$$\vec{\boldsymbol{x}}_i^{(l+1)}(t) = \vec{\boldsymbol{x}}_i^{(l)}(t) + \sum_{s=0}^{t} \alpha_i^{(l)}(ts) \vec{\boldsymbol{x}}_i^{(l)}(ts) \phi_x(\boldsymbol{v}_i^{(l)}(s)),$$

### **Equivariant Temporal Pooling**

Equivariant pooling: apply a linear transformation to the updated coordinates

$$ec{m{x}}_i^*(T) = \hat{m{X}}_i m{w} + ec{m{x}}_i^{(L)}(T-1),$$
 ESM ETL ESM ETL ...

$$\mathcal{L} = \sum_{i=1}^{N} \| \vec{x}_i(T) - \vec{x}_i^*(T) \|_2^2.$$

#### Architecture recap

Input: historical series of spatio-temporal graphs {Gt} from time t=0 to T-1

Equivariant Discrete Fourier Transform (EDFT): processes historical trajectory for each node. Extracts equivariant frequency features-> invariant node features (c) and adjacency matrix (A).

Stacked Modules: computes spatial and temporal relationships. L layers of alternating equivariant components (ESM, ETM)

Equivariant Temporal Pooling: pooling layer to combine time and space dependencies

Output: position of each node at time T

## Architecture recap

#### **EDFT:**

$$egin{aligned} ec{m{f}_i}(k) &= \sum_{t=0}^{T-1} e^{-i' rac{2\pi}{T} k t} \, \left( ec{m{x}}_i^lpha(t) - \overline{m{x}}^lpha(t) 
ight), \ m{A}_{ij}(k) &= w_k(m{h}_i) w_k(m{h}_j) |\langle ec{m{f}_i}(k), ar{m{f}_j}(k) 
angle|, \ m{c}_i(k) &= w_k(m{h}_i) \|ec{m{f}_i}(k)\|^2. \end{aligned}$$

#### Architecture recap

ESM:

$$\begin{aligned} \boldsymbol{m}_{ij} &= \phi_m \left( \boldsymbol{h}_i^{(l)}(t), \boldsymbol{h}_j^{(l)}(t), \frac{(\vec{\boldsymbol{X}}_{ij}^{(l)}(t))^\top \vec{\boldsymbol{X}}_{ij}^{(l)}(t)}{\|(\vec{\boldsymbol{X}}_{ij}^{(l)}(t))^\top \vec{\boldsymbol{X}}_{ij}^{(l)}(t)\|_F}, \boldsymbol{A}_{ij} \right), \\ \boldsymbol{h}_i^{(l+1)}(t) &= \phi_h \left( \boldsymbol{h}_i^{(l)}(t), \boldsymbol{c}_i(k), \sum_{j \neq i} \boldsymbol{m}_{ij} \right), \\ \vec{\boldsymbol{A}}_i^{(l)}(t) &= \frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} \vec{\boldsymbol{X}}_{ij}^{(l)}(t) \phi_{\boldsymbol{X}}(\boldsymbol{m}_{ij}), \\ \vec{\boldsymbol{X}}_i^{(l+1)}(t) &= \vec{\boldsymbol{X}}_i^{(l)}(t) + \vec{\boldsymbol{A}}_i^{(l)}(t). \end{aligned}$$

ETM:

$$\begin{split} &\alpha_i^{(l)}(ts) = \frac{\exp(\boldsymbol{q}_i^{(l)}(t)^\top \boldsymbol{k}_i^{(l)}(s))}{\sum_{s=0}^t \exp(\boldsymbol{q}_i^{(l)}(t)^\top \boldsymbol{k}_i^{(l)}(s))}, \\ &\boldsymbol{h}_i^{(l+1)}(t) = \boldsymbol{h}_i^{(l)}(t) + \sum_{s=0}^t \alpha_i^{(l)}(ts)\boldsymbol{v}_i^{(l)}(s), \\ &\boldsymbol{\vec{X}}_i^{(l+1)}(t) = \boldsymbol{\vec{X}}_i^{(l)}(t) + \sum_{s=0}^t \alpha_i^{(l)}(ts) \ \boldsymbol{\vec{X}}_i^{(l)}(ts) \phi_{\boldsymbol{X}}(\boldsymbol{v}_i^{(l)}(s)), \end{split}$$

where

$$egin{aligned} oldsymbol{q}_i^{(l)}(t) &= \phi_q \left( oldsymbol{h}_i^{(l)}(t) 
ight), \ oldsymbol{k}_i^{(l)}(t) &= \phi_k \left( oldsymbol{h}_i^{(l)}(t) 
ight), \ oldsymbol{v}_i^{(l)}(t) &= \phi_v \left( oldsymbol{h}_i^{(l)}(t) 
ight). \end{aligned}$$

### Equivariance details

**Theorem A.1.** We denote ESTAG as  $\vec{X}(T) = \phi\left(\{(H(t), g \cdot \vec{X}(t), A)\}_{t=0}^{T-1}\right)$ , then  $\phi$  is E(3)-equivariant.

*Proof.* **1.** We firstly prove that EDFT is E(3)-equivariant.

$$egin{aligned} oldsymbol{O} ec{oldsymbol{f}_i}(k) &= \sum_{t=0}^{T-1} e^{-i'rac{2\pi}{T}kt} \, \left( oldsymbol{O} ec{oldsymbol{x}}_i(t) + oldsymbol{b} - \overline{oldsymbol{O} ec{oldsymbol{x}}}(t) + oldsymbol{b} 
ight), \ oldsymbol{A}_{ij}(k) &= w_k(oldsymbol{h}_i) w_k(oldsymbol{h}_j) |\langle oldsymbol{O} ec{oldsymbol{f}}_i(k), oldsymbol{O} ec{oldsymbol{f}}_j(k) 
angle|, \ oldsymbol{c}_i(k) &= w_k(oldsymbol{h}_i) \|oldsymbol{O} ec{oldsymbol{f}}_i(k)\|^2. \end{aligned}$$

**2.** We secondly prove the E(3)-equivariance of ESM.

$$egin{aligned} m{m}_{ij} &= \phi_m \left( m{h}_i^{(l)}(t), m{h}_j^{(l)}(t), \|m{O} m{ec{x}}_{ij}^{(l)}(t)\|^2, m{A}_{ij} 
ight), \ m{h}_i^{(l+1)}(t) &= \phi_h \left( m{h}_i^{(l)}(t), m{c}_i(k), \sum_{j \neq i} m{m}_{ij} 
ight), \ m{O} m{ec{a}}_i(t) &= rac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} m{O} m{ec{x}}_{ij}^{(l)}(t) \phi_x(m{m}_{ij}), \ m{O} m{ec{x}}_i^{(l+1)}(t) + m{b} &= m{O} m{ec{x}}_i^{(l)}(t) + m{b} + m{O} m{ec{a}}_i^{(l+1)}(t). \end{aligned}$$

#### Equivariance details

**3.** We then prove that ETM is E(3)-equivariant.

$$\begin{split} \boldsymbol{q}_{i}^{(l)}(t) &= \phi_{q} \left( \boldsymbol{h}_{i}^{(l)}(t) \right), \\ \boldsymbol{k}_{i}^{(l)}(t) &= \phi_{k} \left( \boldsymbol{h}_{i}^{(l)}(t) \right), \\ \boldsymbol{v}_{i}^{(l)}(t) &= \phi_{v} \left( \boldsymbol{h}_{i}^{(l)}(t) \right), \\ \boldsymbol{\alpha}_{i}^{(l)}(ts) &= \frac{\exp(\boldsymbol{q}_{i}^{(l)}(t)^{\top} \boldsymbol{k}_{i}^{(l)}(s))}{\sum_{s=0}^{t} \exp(\boldsymbol{q}_{i}^{(l)}(t)^{\top} \boldsymbol{k}_{i}^{(l)}(s))}, \\ \boldsymbol{h}_{i}^{(l+1)}(t) &= \boldsymbol{h}_{i}^{(l)}(t) + \sum_{s=0}^{t} \alpha_{i}^{(l)}(ts) \boldsymbol{v}_{i}^{(l)}(s), , \\ \boldsymbol{O} \vec{\boldsymbol{x}}_{i}^{(l+1)}(t) + \boldsymbol{b} &= \boldsymbol{O} \vec{\boldsymbol{x}}_{i}^{(l)}(t) + \boldsymbol{b} + \sum_{s=0}^{t} \alpha_{i}^{(l)}(ts) \boldsymbol{O} \vec{\boldsymbol{x}}_{i}^{(l)}(ts) \phi_{x}(\boldsymbol{v}_{i}^{(l)}(s)). \end{split}$$

**4.** We finally prove that the linear pooling is equivariant:

$$O\vec{x}_{i}^{*}(T) + b = O\hat{X}_{i}w + O\vec{x}_{i}^{(L)}(T-1) + b.$$

#### Experiments

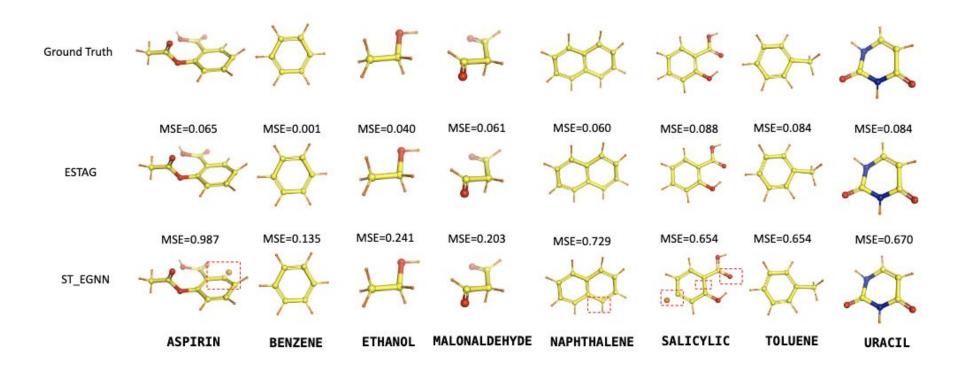
#### Testing on three datasets for the different levels:

Molecular: MD17, trajectories of small molecules (e.g., Aspirin, Benzene, Ethanol) generated by Molecular Dynamics simulation. External temperature and pressure are unobserved (non-Markovian behaviour)

Protein-level: AdK equilibrium trajectory dataset (protein dynamics). The dynamics of water and ions are unobserved (non-Markovian behaviour)

Macro-level: CMU Motion Capture Database (human motion trajectories) (e.g., walking, basketball). Environmental states are unobserved (non-Markovian behaviour)

#### Experimental results: molecular



#### Experimental results: molecular

Table 1: Prediction error  $(\times 10^{-3})$  on MD17 dataset. Results averaged across 3 runs. We do not display the standard deviation due to its small value.

|                       | ASPIRIN | BENZENE | ETHANOL | MALONALDEHYDE      | NAPHTHALENI  | E SALICYLIC | TOLUENE | URACIL |
|-----------------------|---------|---------|---------|--------------------|--------------|-------------|---------|--------|
| PT-s                  | 15.579  | 4.457   | 4.332   | 13.206             | 8.958        | 12.256      | 6.818   | 10.269 |
| $\operatorname{PT-}m$ | 9.058   | 2.536   | 2.688   | 6.749              | 6.918        | 8.122       | 5.622   | 7.257  |
| $\operatorname{PT-}t$ | 0.715   | 0.114   | 0.456   | 0.596              | 0.737        | 0.688       | 0.688   | 0.674  |
| EGNN-s                | 12.056  | 3.290   | 2.354   | 10.635             | 4.871        | 8.733       | 3.154   | 6.815  |
| $EGNN	ext{-}m$        | 6.237   | 1.882   | 1.532   | 4.842              | 3.791        | 4.623       | 2.516   | 3.606  |
| EGNN-t                | 0.625   | 0.112   | 0.416   | 0.513              | 0.614        | 0.598       | 0.577   | 0.568  |
| ST_TFN                | 0.719   | 0.122   | 0.432   | 0.569              | 0.688        | 0.684       | 0.628   | 0.669  |
| ST_GNN                | 1.014   | 0.210   | 0.487   | 0.664              | 0.769        | 0.789       | 0.713   | 0.680  |
| ST_SE(3)TR            | 0.669   | 0.119   | 0.428   | 0.550              | 0.625        | 0.630       | 0.591   | 0.597  |
| ST_EGNN               | 0.735   | 0.163   | 0.245   | 0.427              | 0.745        | 0.687       | 0.553   | 0.445  |
| EQMOTION              | 0.721   | 0.156   | 0.476   | $\overline{0.600}$ | 0.747        | 0.697       | 0.691   | 0.681  |
| STGCN                 | 0.715   | 0.106   | 0.456   | 0.596              | 0.736        | 0.682       | 0.687   | 0.673  |
| AGL-STAN              | 0.719   | 0.106   | 0.459   | 0.596              | <u>0.601</u> | 0.452       | 0.683   | 0.515  |
| ESTAG                 | 0.063   | 0.003   | 0.099   | 0.101              | 0.068        | 0.047       | 0.079   | 0.066  |

## Experimental results: protein and macro

| <b>M</b> ETHOD        | MSE   | TIME(S) |
|-----------------------|-------|---------|
| PT-s                  | 3.260 | 2.5     |
| $\operatorname{PT-}m$ | 3.302 |         |
| $\operatorname{PT-}t$ | 2.022 | -       |
| EGNN-s                | 3.254 | 1.062   |
| EGNN-m                | 3.278 | 1.088   |
| EGNN-t                | 1.983 | 1.069   |
| ST_GNN                | 1.871 | 2.769   |
| ST_GMN                | 1.526 | 4.705   |
| ST_EGNN               | 1.543 | 4.705   |
| STGCN                 | 1.578 | 1.840   |
| AGL-STAN              | 1.671 | 1.478   |
| ESTAG                 | 1.471 | 6.876   |

| <b>M</b> ETHOD                  | WALK    | BASKETBALL |
|---------------------------------|---------|------------|
| PT-s                            | 329.474 | 886.023    |
| $\operatorname{PT-}m$           | 127.152 | 413.306    |
| $\operatorname{PT-}t$           | 3.831   | 15.878     |
| EGNN-s                          | 63.540  | 749.486    |
| $\operatorname{EGNN} olimits_m$ | 32.016  | 335.002    |
| EGNN-t                          | 0.786   | 12.492     |
| ST_GNN                          | 0.441   | 15.336     |
| ST_TFN                          | 0.597   | 13.709     |
| ST_SE(3)TR                      | 0.236   | 13.851     |
| ST_EGNN                         | 0.538   | 13.199     |
| <b>EQMOTION</b>                 | 1.011   | 4.893      |
| STGCN                           | 0.062   | 4.919      |
| AGL-STAN                        | 0.037   | 5.734      |
| ESTAG                           | 0.040   | 0.746      |

Table 4: Ablation studies ( $\times 10^{-3}$ ) on MD17 dataset. Results averaged across 3 runs.

#### Ablation studies

|                  | Aspirin | Benzene | Ethanol | Malonaldehyde | Naphthalene | Salicylic | Toluene | Uracil |
|------------------|---------|---------|---------|---------------|-------------|-----------|---------|--------|
| ESTAG            | 0.063   | 0.003   | 0.099   | 0.101         | 0.068       | 0.047     | 0.079   | 0.066  |
| w/o EDFT         | 0.079   | 0.003   | 0.108   | 0.148         | 0.104       | 0.145     | 0.102   | 0.063  |
| w/o Attention    | 0.087   | 0.004   | 0.104   | 0.112         | 0.129       | 0.095     | 0.097   | 0.078  |
| w/o Equivariance | 0.762   | 0.114   | 0.458   | 0.604         | 0.738       | 0.698     | 0.690   | 0.680  |
| w/o Temporal     | 0.084   | 0.003   | 0.111   | 0.139         | 0.141       | 0.098     | 0.153   | 0.071  |

Table 5: MSE on Ethanol w.r.t. the number of layers L.

| $\overline{}$            | 1    | 2     | 3     | 4     | 5     | 6     |
|--------------------------|------|-------|-------|-------|-------|-------|
| MSE ( $\times 10^{-4}$ ) | 1.25 | 0.990 | 1.096 | 1.022 | 1.042 | 1.028 |

Without EDFT: considerably worse performance. wk (learnable) shown to be beneficial as a spectral filter

Without attention: slightly worse performance

Without equivariance: considerably worse performance

Without temporal pooling: slightly worse performance

#### Paper analysis: contributions and advantages

- Time: modelling non-Markovian features, capturing periodicity,
   via EDFT and attention mechanism
- Space: Euclidean symmetry
- Good overall performance

#### Paper analysis: limitations and criticism

- Limited equivariance: missing embedded physical laws, e.g. no conservation of energy
- Limited benchmarks
- Inconsistent baseline comparisons (due to modifications)
- Ablation study interpretations (limited time effects?)
- Visualization as cherry-picking?

Thanks for listening!

Questions?