Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds

Gleb Ingman

Agenda

- Motivation
- Mathematical prerequisites Wigner D-Matrix Spherical Harmonics Tensor product reduction
- 3 TFN Architecture
 Architecture
 Proving equivariance
- 4 Applications
 Tetris
 Molecular structures
- 5 Discussion
- **6** References

Motivation

Goal: utilize symmetries of the point clouds, graphs and physical world in the NN design

Approach: equivariance with respect to group of isometries in 3D

Two point **masses** with velocity and acceleration

Same system, with rotated coordinates.

Source: NeurIPS Workshop

Wigner D-Matrix

Definition

A representation of a group G is a function $D: G \to \mathbb{R}^{n \times n}$, such that for all $g, h \in G$,

$$D(g)D(h)=D(gh)$$

The elements of 3D rotation group can be represented by $(2l+1) \times (2l+1)$ -dimensional matrices $D^{(l)}$, which are called Wigner D-matrices.

Example

For scalars and 3-space vectors, the Wigner *D*-matrices are

$$D^{(0)}(g) = 1$$
 and $D^{(1)}(g) = \mathcal{R}(g)$.

Spherical Harmonics

Source: Guezenoc, Corentin (2021) Binaural Synthesis Individualization based on Listener Perceptual Feedback

Spherical Harmonics

Definition

A function $\mathcal{L}: \mathcal{X} \to \mathcal{Y}$ is equivariant with respect to a group G and group representations $D^{\mathcal{X}}$ and $D^{\mathcal{Y}}$ if for all $g \in G$,

$$\mathcal{L} \circ \mathcal{D}^{\mathcal{X}}(g) = \mathcal{D}^{\mathcal{Y}}(g) \circ \mathcal{L}$$

Source: Equivariant Models — Open Catalyst Intro Series

Tensor product reduction

Source: Chaoran Cheng blog

Clebsch-Gordan coefficients are used to calculate tensor products.

7/18

Gleb Ingman Tensor field networks May 27, 2025

```
V_{acm}^{(l)} = \begin{cases} 0: & \texttt{[[m0]], [[m1]]],} \\ 1: & \texttt{[[v0x, v0y, v0z], [a0x, a0y, a0z]],} \\ & \texttt{[v1x, v1y, v1z], [a1x, a1y, a1z]]]} \end{cases} 1: dictionary key, l [] point index, a [] channel index, c [] representation index, m
```

Source: NeurIPS Workshop presentation

Inputs and outputs of a layer: 3D coordinates of points and features at those points(scalars, vectors, and higher-order tensors).

Source: NeurIPS Workshop presentation

Source: NeurIPS Workshop presentation

Filters are the products of a learnable radial function and a spherical harmonic

Source: Original paper

Proving equivariance

- **Permutation** equivariance (by design)
- Translation equivariance (use only differences between vectors)
- Rotation equivariance (see below)

Proving equivariance

Definition

A function $\mathcal{L}: \mathcal{X} \to \mathcal{Y}$ is equivariant with respect to a group G and group representations $D^{\mathcal{X}}$ and $D^{\mathcal{Y}}$ if for all $g \in G$,

$$\mathcal{L} \circ \mathcal{D}^{\mathcal{X}}(g) = \mathcal{D}^{\mathcal{Y}}(g) \circ \mathcal{L}$$

May 27, 2025

Proving equivariance

Source: NeurIPS Workshop presentation

- Perfect classification score on rotated and translated figures after training on the figures in single orientation
- Networks relying only on distances and angles can not distinguish mirrored shapes, but TFN can

Molecular structures

Source: original paper

- Task is to locate randomly removed atom
- Output is a vector pointing to the missing point and a confidence probability for each point
- Over 95% prediction accuracy for structures with 20-30 atoms

Discussion

Pros

- data augmentation not needed
- universal architecture for equivariant deep learning on atomic systems and 3D graphs
- non-scalar features improve expressive power

Cons

- O(L⁶) complexity, where L is rotation order
- Computing spherical harmonics on the fly can be slow

References and credits for all illustrations

Thomas, Nathaniel and Smidt, Tess and Kearnes, Steven and Yang, Lusann and Li, Li and Kohlhoff, Kai and Riley, Patrick (2018)

Tensor Field Networks: Rotation- and Translation-Equivariant Neural Networks for 3D Point Clouds

Github TNF

https://github.com/tensorfieldnetworks/tensorfieldnetworks

Github Euclidean neural networks

https://github.com/e3nn/e3nn

Chaoran Cheng

Blog post

https://github.com/e3nn/e3nn