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* Material page will go online after this pre-meeting
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How is the seminar organized?

* Seminar meetings: Talks and discussion

— Day: Tuesday, approximately every second week (TBA)

— Time: 14:00-16:00 (seminar) & 16:00—18:00 (supervisor meetings)

— Location: hybrid (room TBA)

— In case of special circumstances please let us know and we will find a solution
— Each session will consist of two talks which are held in English

Attendance is mandatory!

* Talk preparation / contact with supervisor
— One month before talk: meet supervisor for questions (optional, but recommended)
— Two weeks before talk: meet supervisor to go through slides (optional, but recommended)
— One week before talk: send slides to your supervisor (mandatory)

— Two weeks after talk: submit your report via email (mandatory)



What about the presentation?

* General set-up:

— Duration: 20-25 minutes talk + 10—15 minutes discussion
— Make sure to finish on time - not too early and not too late!
— Rule of thumb: 1-2 minutes per slide = 10-20 slides

— Do not put too much information on the slides!
* Recommended structure (talk):

— Introduction

Overview / Outline

— Method description
— Experiments and results
— Personal comments

Summary



What about the discussion after each talk?

* Discussion afterwards will influence your grade
* Ask questions!
* There are no stupid questions!



What about the final report?

* General set-up:

— Use KTEX template provided on web page
— Length: 3-4 pages
— Submission deadline: Two weeks after talk

* Recommended structure (main text only):

— Introduction

Method description

Experiments and results

Discussion of results

— Summary
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How do you register for the seminar?

" Step 1: Official registration via TUM matching system
— Go to https://matching.in.tum.de

— Register for: Modern Methods for 3D Reconstruction and Representation

* Step 2: Personal registration via email

In the list of papers on the web page, select your three favorites
— Write an email ranking these three favorites to the seminar email address
— Email subject: “[Modern3D] application [your name]’

List how you fulfill the lecture requirements: See next slide

Attach your transcript(s)

— Registrations without email / emails with missing information will be ignored!
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Required Lectures for the Seminar

* To understand the content of the seminar well, we recommend students to have completed

— A lecture on optimization, similar to Nonlinear Optimization: Advanced (MA3503)

— A lecture on computer vision that includes geometry, similar to Computer Vision |I: Multiple View
Geometry (IN2228)

* You can name up to three lecture from your transcript that, in combination, fulfill the requirements

for subdomain. Example:

— CV & Geometry: Computer Vision Il (computer vision), Projektive Geometrie 1 (for geometry)

* Please list the lectures and brief explanations in your e-mail and attach your transcript(s) as proof.
We will not scan your transcript(s) for suitable lectures!

* If you don’t perfectly fulfill the lecture requirements you might still be able to join — this will depend
on the other applicants! Thus: Consider applying anyways if you really want to take the
seminar!
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How do you register for the seminar?

Example registration email:

realtime3d-ws21@vision.in.tum.de

t: [Realtime3D] application [Lukas Koestler]

: Kostler, Lukas — lukas.koestler@tum.de

| would like to present the following papers:
1. ORB-SLAM

2.DS0

3. DTAM

| have taken the following related courses:
1. Optimization: Nonlinear Optimization: Advanced (MA2503)
2. Computer Vision & Geometry: Multiple View Geometry, Differential Geometry, Projektive Geometrie

Please find the attached transcript.

Best,
Lukas

—

transcript.pdf
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How do we select candidates and assign papers?

* Candidate selection
— Only students registered in the matching system AND
emails containing all required information will be considered
— Among students meeting all criteria, selection will be random. Other students will be ranked
according to the requirement fulfillment.
— You will get notified by the matching system about the decision
" Paper assignment
— Papers are assigned after the participant list is finalized

— We give our best to accommodate your preference list in the assignment
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Deep Patch Visual Odometry

Zachary Teed, Lahav Lipson, Jia Deng 2023
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* Patch based tracking and novel update operator coupled with differentiable bundle adjustment

15



Deep Patch Visual SLAM

Lahav Lipson, Zachary Teed, and Jia Deng, 2024
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VGGSIM: Visual Geometry Grounded Deep

Structure From Motion

Jianyuan Wang, Nikita Karaev, Christian Rupprecht, David Novotny, 2024
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* Fully learned modular SFM pipeline
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https://arxiv.org/search/cs?searchtype=author&query=Wang,+J
https://arxiv.org/search/cs?searchtype=author&query=Karaev,+N
https://arxiv.org/search/cs?searchtype=author&query=Rupprecht,+C
https://arxiv.org/search/cs?searchtype=author&query=Novotny,+D

NERF: Representing Scenes as Neural Radiance

Fields for View Synthesis

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, Ren Ng, 2020
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https://arxiv.org/search/cs?searchtype=author&query=Mildenhall,+B
https://arxiv.org/search/cs?searchtype=author&query=P.,+P
https://arxiv.org/search/cs?searchtype=author&query=Tancik,+M
https://arxiv.org/search/cs?searchtype=author&query=Barron,+J+T
https://arxiv.org/search/cs?searchtype=author&query=Ramamoorthi,+R
https://arxiv.org/search/cs?searchtype=author&query=Ng,+R

Nerfels: Renderable Neural Codes for

Improved Camera Pose Estimation

Gil Avraham, Julian Straub, Tianwei Shen, Tsun-Yi Yang, Hugo Germain, Chris Sweeney, Vasileios Balntas, David Novotny, Daniel DeTone, Richard Newcon

Nerfel pose
Nerfel code l

Nerfel

* Learned renderable nerf pieces for pairwise estimations
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https://arxiv.org/search/cs?searchtype=author&query=Avraham,+G
https://arxiv.org/search/cs?searchtype=author&query=Straub,+J
https://arxiv.org/search/cs?searchtype=author&query=Shen,+T
https://arxiv.org/search/cs?searchtype=author&query=Yang,+T
https://arxiv.org/search/cs?searchtype=author&query=Germain,+H
https://arxiv.org/search/cs?searchtype=author&query=Sweeney,+C
https://arxiv.org/search/cs?searchtype=author&query=Balntas,+V
https://arxiv.org/search/cs?searchtype=author&query=Novotny,+D
https://arxiv.org/search/cs?searchtype=author&query=DeTone,+D
https://arxiv.org/search/cs?searchtype=author&query=Newcombe,+R

Pixel-Perfect Structure-from-Motion with
Featuremetric Refinement

Lindenberger, Sarlin, Larsson, Pollefeys 2021
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* Refinements of keypoint and bundle adjustments by using a featuremetric error based on dense
features predicted by a neural network

* Significantly improves the accuracy of camera poses and scene geometry
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3D Gaussian Splatting

for Real-Time Radiance Field Rendering3

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkuhler, George Drettakis, 2
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https://arxiv.org/search/cs?searchtype=author&query=Kerbl,+B
https://arxiv.org/search/cs?searchtype=author&query=Kopanas,+G
https://arxiv.org/search/cs?searchtype=author&query=Leimk%C3%BChler,+T
https://arxiv.org/search/cs?searchtype=author&query=Drettakis,+G

CodeSLAM
Michael Bloesch et al. 2018
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Learning a compact, optimisable representation of the scene geometry

22



D3VO: Deep Depth, Deep Pose and Deep

Uncertainty for Monocular Visual Odometry
Yang, von Stumberg, Wang, Cremers 2020

EuRoC MAV V2_03_difficult

Monocular DSO End-end VO

* Monocular visual odometry framework that uses deep-learning on three levels: deep depth, pose
and uncertainty estimation

* Shows impressive performance improvements in comparison to traditional methods (DSO, ORB)
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DROID-SLAM: Deep Visual SLAM for Monocular,
Stereo, and RGB-D Cameras

Teed and Deng 2021
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Figure 1: DROID-SLAM can operate on monocular, stereo, and RGB-D video. It builds a dense 3D
map of the environment while simultaneously localizing the camera within the map.

* Monocular, Stereo, and RGB-D visual SLAM based on optical flow estimation (RAFT by Teed and
Deng, 2020 ECCV best paper) and bundle adjustment
* Shows impressive robustness and accuracy across a wide range of datasets while trained only on

the TartanAir dataset
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TUTI

FlowMap: High-Quality Camera Poses, Intrinsics,

and Depth via Gradient Descent

Cameron Smith, David Charatan, Ayush Tewari, Vincent Sitzmann, 2024

Video and Off-the-Shelf FlowMap Optimization Downstream Task:
Correspondences via Gradient Descent Gaussian Splatting
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* Representation of point cloud as a depth network
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https://arxiv.org/search/cs?searchtype=author&query=Smith,+C
https://arxiv.org/search/cs?searchtype=author&query=Charatan,+D
https://arxiv.org/search/cs?searchtype=author&query=Tewari,+A
https://arxiv.org/search/cs?searchtype=author&query=Sitzmann,+V

TANDEM: Tracking and Dense Mapping in Real-time
using Deep Multi-view Stereo

Koestler, Yang, Zeller, Cremers 2021

* Combines photometric tracking and deep multi-view stereo depth estimation into a monocular
dense SLAM algorithm. Using depth maps rendered from the incrementally-built TSDF model
improves tracking robustness.
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Scene Coordinate Reconstruction

Eric Brachmann, Daniyar TurmukhambetovDaniyar TurmukhambetovJamie Wynn, Shuai Chen, Tommaso Cavallari,

Aron Monszpart, , Victor Adrian Prisacariu, 2024
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* SFM based on scene coordinate regression networks


https://arxiv.org/search/cs?searchtype=author&query=Brachmann,+E
https://arxiv.org/search/cs?searchtype=author&query=Turmukhambetov,+D
https://arxiv.org/search/cs?searchtype=author&query=Turmukhambetov,+D
https://arxiv.org/search/cs?searchtype=author&query=Wynn,+J
https://arxiv.org/search/cs?searchtype=author&query=Chen,+S
https://arxiv.org/search/cs?searchtype=author&query=Cavallari,+T
https://arxiv.org/search/cs?searchtype=author&query=Monszpart,+%C3%81
https://arxiv.org/search/cs?searchtype=author&query=Prisacariu,+V+A

DUSt3R: Geometric 3D Vision Made Easy

Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, Jéerome Revaud, 2024
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* Modern foundational model for point cloud prediction
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https://europe.naverlabs.com/people_user_naverlabs/vleroy/
https://europe.naverlabs.com/people_user_naverlabs/ycabon/
https://europe.naverlabs.com/people_user_naverlabs/chidlovs/
https://europe.naverlabs.com/people_user_naverlabs/jrevaud/

Questions?

Reminder:

* Web page: https://cvg.cit.tum.de/teaching/ss2025/modern3d

* Contact: modern3d-ss25@vision.in.tum.de
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