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1. The non-zero essential matrix E = T̂R with T ∈ R3 and R ∈ SO(3) has the singular value
decomposition E = UΣV T . Let RZ
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According to the lecture (Chapter 5, Slide 9), there exist exactly two options for (T̂ , R):(
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Show that by using (1) and (2), the following properties hold:

(a) T̂1, T̂2 ∈ so(3) (i.e. T̂1, T̂2 are skew-symmetric matrices)

(b) R1, R2 ∈ SO(3) (i.e. R1, R2 are rotation matrices)

2. Consider the matrices E = T̂R and H = R+ Tu⊤ with R ∈ R3×3 and T, u ∈ R3.
Show that the following holds:

(a) E = T̂H

(b) H⊤E + E⊤H = 0

3. Let F ∈ R3×3 be the fundamental matrix for the cameras C1 and C2. Show that the following
holds for the epipoles e1 and e2:

Fe1 = 0 and e⊤2 F = 0
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