Multiple View Geometry: Exercise Sheet 6

Prof. Dr. Daniel Cremers, Shenhan Qian, Simon Weber, Anna Ribic, and Tarun Yenamandra Computer Vision Group, TU Munich Wednesdays 16:15-18:15 at Hörsaal 2, "Interims I" (5620.01.102), and on RBG Live

Exercise: June 11th, 2025

1. The non-zero essential matrix $E = \hat{T}R$ with $T \in \mathbb{R}^3$ and $R \in SO(3)$ has the singular value decomposition $E = U\Sigma V^T$. Let $R_Z(\pm \frac{\pi}{2})$ be the rotation by $\pm \frac{\pi}{2}$ around the z-axis.

According to the lecture (Chapter 5, Slide 9), there exist exactly two options for (\hat{T}, R) :

$$\left(\hat{T}_1, R_1\right) = \left(UR_Z\left(+\frac{\pi}{2}\right)\Sigma U^{\top}, \quad UR_Z\left(+\frac{\pi}{2}\right)^{\top}V^{\top}\right)$$
(1)

$$\left(\hat{T}_{2}, R_{2}\right) = \left(UR_{Z}\left(-\frac{\pi}{2}\right)\Sigma U^{\top}, \quad UR_{Z}\left(-\frac{\pi}{2}\right)^{\top}V^{\top}\right)$$
 (2)

Show that by using (1) and (2), the following properties hold:

- (a) $\hat{T}_1, \hat{T}_2 \in so(3)$ (i.e. \hat{T}_1, \hat{T}_2 are skew-symmetric matrices)
- (b) $R_1, R_2 \in SO(3)$ (i.e. R_1, R_2 are rotation matrices)

0

2. Consider the matrices $E = \hat{T}R$ and $H = R + Tu^{\top}$ with $R \in \mathbb{R}^{3 \times 3}$ and $T, u \in \mathbb{R}^3$. Show that the following holds:

(a)
$$E = \hat{T}H$$

(b) $H^{\top}E + E^{\top}H =$

3. Let $F \in \mathbb{R}^{3\times 3}$ be the fundamental matrix for the cameras C_1 and C_2 . Show that the following holds for the epipoles e_1 and e_2 :

$$Fe_1 = 0$$
 and $e_2^\top F = 0$