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Exercise: June 25th, 2025

Download the ICRA 2013 paper Robust Odometry Estimation for RGB-D Cameras by Kerl, Sturm
and Cremers from the Publications sections on our webpage.1 Read the paper and focus in particular
on III. Direct Motion Estimation.

1. Image Warping

(a) Look at the warping function τ(ξ,x) in Eq. (9). What do τ(ξ,x) and ri(ξ) look like at
ξ = 0?

(b) Prove that the derivative of ri(ξ) w.r.t. ξ at ξ = 0 is
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To this end, apply the chain rule multiple times and use the following identity:

∂T (g(ξ),p)

∂ξ
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∈ R3×6 .

Note: The notation ∂f(x)/∂x denotes the Jacobian matrix including all first-order par-
tial derivatives, where the number of rows is the number of dimensions of f(x), and the
number of columns is the number of dimensions of x.

(c) Following the derivation in (b), determine the derivative for arbitrary ξ

∂ri(∆ξ ◦ ξ)
∂∆ξ
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where ◦ is defined by

ξ1 ◦ ξ2 := log
(
exp(ξ̂1) · exp(ξ̂2)

)∨
.

∨ : se(3) → R
6 is the inverse of the hat transform.

Hint: Rewrite the problem such that you can make use of part b).

1https://cvg.cit.tum.de/_media/spezial/bib/kerl13icra.pdf
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2. Image Pyramids

In order to handle large translational and rotational motions, a coarse-to-fine scheme is applied
in the paper. To go from one level l to l + 1, the images I(l) (intensity) and D(l) (depth) are
downscaled by averaging over intensities or valid depth values, respectively:

I(l+1)(n,m) : =
1

4
·

∑
(n′,m′)∈O(n,m)

I(l)(n′,m′)

O(n,m) = {(2n, 2m), (2n+ 1, 2m), (2n, 2m+ 1), (2n+ 1, 2m+ 1)}

D(l+1)(n,m) : =
1

|Od(n,m)|
·

∑
(n′,m′)∈Od(n,m)

D(l)(n′,m′)

Od(n,m) = {(n′,m′) ∈ O(n,m) : D(n′,m′) ̸= 0}

How does the camera matrix K change from level l to l + 1? Write down f
(l+1)
x , f (l+1)

y , c(l+1)
x

and c
(l+1)
y in terms of f (l)

x , f (l)
y , c(l)x and c

(l)
y .

The following problem requires parts of the content from Lecture on Wednesday, 26.07. You
can start them after that lecture.

3. Optimization for Normally Distributed p(ri)

(a) Confirm that a normally distributed p(ri) with a uniform prior on the camera motion leads
to normal least squares minimization. To this end, use

p(ri|ξ) = p(ri) = A exp

(
− r2i
σ2

)
to show that with a constant prior p(ξ), the maximum a posteriori estimate is given by

ξMAP = argmin
ξ

∑
i

ri(ξ)
2 .

(b) Explicitly show that the weights

w(ri) =
1

ri

∂ log p(ri)

∂ri

are constant for normally distributed p(ri).

(c) Show that in the case of normally distributed p(ri) the update step ∆ξ can be computed as

∆ξ = −
(
J⊤J

)−1
J⊤r(0) .
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