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Exercise: July 2nd, 2025

This exercise partly builds upon the theory part of last week’s exercise. Check the solutions of Sheet 8
in case there is something you do not understand.

1. Robust Least Squares

In order to make the solution of the Direct Image Alignment from Sheet 8 more robust to
outliers, one can replace the square in the energy

E(ξ) =
∑
i

ri(ξ)
2

by a robust loss function ρ:
Eρ(ξ) =

∑
i

ρ (ri(ξ)) .

(a) What situations can you think of where a robust loss function might be needed?

The minimizer of Eρ also minimizes the weighted least squares problem

Ew(ξ) =
∑
i

w(ri)ri(ξ)
2

with weights defined by w(t) := ρ′(t)/t.

(b) One example for a robust loss function is the Huber loss function ρδ:

ρδ(t) =

{
t2

2 |t| ≤ δ

δ|t| − δ2

2 else

Write down the weight function for the Huber loss.
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2. Optimization Techniques

Define r as the vector containing the residuals and J as the matrix containing gradients of all
residuals at ξ = 0:

ri = ri(0) , J (i) =
∂ri(ξ)

∂ξ

∣∣∣∣
ξ=0

.

Furthermore, let W be the diagonal matrix with weights w(ri(0)) on the diagonal. Write down
the update step ∆ξ for each of the following minimization methods:

(a) Gradient descent, normal least squares,

(b) Gradient descent, weighted least squares,

(c) Gauss-Newton, normal least squares,

(d) Gauss-Newton, weighted least squares,

(e) Levenberg-Marquardt, normal least squares, and

(f) Levenberg-Marquardt, weighted least squares.
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