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1. Gauss-Newton Method When optimizing a function F (x) = 1
2∥r(x)∥

2
2 with residual r(x) ∈

R
n, andx ∈ Rm, the Gauss-Newton method approximates the residual using a Taylor expan-

sion:
r(x0 +∆x) ≈ r(x0) + Jr(x0)∆x (1)

The minimization problem thus is

min
∆x

1

2
∥r0 + J∆x∥22 (2)

with a slight abuse of notation J := Jr(x0) and r0 := r(x0).

(a) Compute the gradient of 1
2∥r0 + J∆x∥22 w.r.t. ∆x.

(b) Solve the optimality condition for ∆x.

(c) What problems can occur when solving for ∆x?

2. Levenberg-Marquardt Method One way to motivate the Levenberg-Marquardt method is to
tackle the previously discussed problem by adding the damping term as follows:(

J⊤J + λDTD
)
∆x = −J⊤r0. (3)

However, this can also be seen as a regularized version of the Gauss-Newton method.

min
∆x

1

2
∥r0 + J∆x∥22 +

λ

2
∥D∆x∥22. (4)

(a) Compute the gradient of the new cost function w.r.t. ∆x.

(b) Solve the optimality condition for ∆x.

(c) What is the effect of λ on the solution?

3. Levenberg-Marquardt for Bundle Adjustment Now, we apply the Levenberg-Marquardt
method to the bundle adjustment problem. The variables are as follows:

• np: number poses

• nl: number landmarks

• dp: number of camera parameters

• xp ∈ Rnpdp : camera parameters

• xl ∈ Rnl3: landmark positions

• x =

[
xp
xl

]
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We resuse the results from the previous problem with square diagonal matrix D

min
∆x

1

2
∥r + J∆x∥22 +

λ

2
∥D∆x∥22. (5)

which is the following optimality condition

(J⊤J + λDTD)︸ ︷︷ ︸
H

∆x = −J⊤r0. (6)

Now we split the Jacobian and damping into two parts J =
[
Jp Jl

]
and D =

[
Dp Dl

]
correponding to the camera parameters and the landmark positions.

(a) What is the dimension of H? What problems can occur when solving for ∆x? What are
the dimensions of Jp, Jℓ, Dp, Dℓ? Lets see what we can do...

(b) Rewrite the optimality condition by rewriting the matrix H into the block matrix form,
yielding the normal equation:(

U W
W⊤ V

)(
∆xp
∆xℓ

)
=

(
bp
bℓ

)
. (7)

What are U,W, V, bp, bℓ and their dimensions?

(c) The Schur complement is allowing us to first solve for ∆xp using the Schur complement
S. Derive the Schur complement S and the vector b̃ for the reduced system: S∆xp = b̃.

(d) What is the dimension of S?

4. Power Bundle Adjustment The goal of Power Bundle Adjustment is to solve the reduced
system S∆xp = b̃ efficiently.

(a) From the lecture, we know that computing the inverse of the Schur component can be
approximated by a matrix power series. Specifically, we have:

S = U(I − U−1WV −1W⊤)

→ S−1 = (I − U−1WV −1W⊤)−1U−1

→ S−1 ≈
m∑
i=0

(U−1WV −1W⊤)iU−1.

(8)

To apply the matrix power series, we need to guarantee the spectral norm of the matrix is
smaller than 1, i.e. show that all the eigenvalues µ of U−1WV −1W⊤ satisfy 0 ≤ µ < 1.
Hint: Consider the similar matrix U−1/2WV −1WU−1/2 for U−1WV −1W⊤ and show
U−1/2WV −1WU−1/2 is positive semi-definite. Additionally, the similar matrix U−1/2SU−1/2

for U−1S and show it is positive definite.
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5. Dense RGB-D Tracking In the previous bundle adjustment problem, we have seen how to
optimize the camera parameters xp and landmark positions xl. Here, in the context of direct
tracking, we optimize for the extrinsic camera parameters xp = [ξ1, ..., ξnp ] using the photo-
metric error as a residual and frame wise depth map h provided. With known camera poses, the
3D geometry can thus be densely be reconstructed. No need to optimize for landmark positions
xl. The residual is as follows:

E(xp) =
∑
i

∫
Ω1

∥ I1(x)− Ii(Πgξi(hx))︸ ︷︷ ︸
rx(ξi)

∥2dx (9)

where I1 and Ii are the intensity images, Π is the projection operator, gξi is the rigid transorm
depending on the camera pose. The integral is over the image domain Ω1 with x here being the
homogeneous image coordinate and h its depth in the first frame.

(a) Using the results from previous problems, state the optimality condition for minimizing
∥rx(ξi)∥22 using the Levenberg-Marquardt method.

(b) Compute the derivative of the residual rx(ξi) w.r.t. the camera parameters ξi using the
chain rule. You don’t have to explicitly compute d

dξi
gξi(hx).
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