Chapter 10: Recent Developments in Multi-view Reconstruction

Daniel Cremers Chair of Computer Vision and AI, TU Munich Munich Center for Machine Learning

LSD SLAM: Large-Scale Direct SLAM

Engel, Schöps, Cremers, ECCV 2014: LSD SLAM Engel, Koltun, Cremers, PAMI 2018: Direct Sparse Odometry

Direct Sparse Odometry

Engel, Koltun, Cremers, PAMI 2018

Sensor Integration: Stereo, IMU, RTK-GNSS,...

Mobile Mapping System:

- GPS-independent realtime localization
- Leveraging off-the-shelf cameras

Spatial AI Cloud Platform:

- Access to navigation and map data
- Semantic scene understanding

Visual-inertial Odometry

Von Stumberg, Cremers, "Delayed Marginalization VI Odometry", ICRA 2022

Daniel Cremers (TUM)

Realtime Large-Scale Semantic Mapping

 $\bullet \bullet \bullet$

ImageNet: Objects in 14 Mio Images

The Advent of Deep Networks

Performance Scores on the ImageNet Recognition Challenge

Deep Nets beyond Object Recognition

P. Fischer, A. Dosovitskiy, E. Ilg, P. Häusser, C. Hazırbas, V. Golkov P. v.d. Smagt, D. Cremers, T. Brox

FlowNet: Learning Optical Flow with Convolutional Networks

Dosovitsky et al., "FlowNet", ICCV 2015

Sequence (length=L)

Golkov et al., NeurIPS '16

Badrinarayanan et al., "SegNet", arxiv'15

Caelles et al., CVPR 2018

Daniel Cremers (TUM)

Deep Nets for Visual SLAM

Daniel Cremers (TUM)

Recent Developments in Multi-view Reconstruction

Deep Neural Network

Kuznietsov et al. CVPR 2017

Yang, Wang, Stueckler, Cremers, ECCV 2018

D3VO: Depth, Pose & Uncertainty

Yang et al., "D3VO", CVPR '20

Recent Developments in Multi-view Reconstruction

Deep Depth and Pose

Self-supervised learning:

$$L_{self} = r(I_t, I_{t' \to t})$$

 $I_{t' \to t}$

Yang et al., "D3VO", CVPR '20

Deep Affine Brightness Correction

Self-supervised learning:

$$L_{self} = r(a_t^{t'}I_t + b_t^{t'}, I_{t' \to t})$$

 $I_{t' \to t}$

Yang et al., "D3VO", CVPR '20

Deep Uncertainty

Predicting Depth, Pose & Uncertainty

Self-supervised learning:

$$L_{self} = \frac{r(a_t^{t'}I_t + b_t^{t'}, I_{t' \to t})}{\sum_t} + \log \sum_t$$

Yang et al., "D3VO", CVPR '20

Experiments: Visual Odometry

KITTI: classical methods

KITTI: deep methods

		mean			Seq. 09	Seq. 10	a fin
Mono	ORB-SLAM	37.0	End-to-end	Gordon et al.	2.7	6.8	A subscription
Stereo	Stereo DSO	0.89	Hybrid	Zhan et al.	2.61	2.29	
Mono	D3VO	0.82	Hybrid	D3VO	0.78	0.62	

EuRoC: classical methods

		mean
Mono	DSO	0.48
Mono-VIO	VI-DSO	0.11
Stereo-VIO	Basalt	0.08
Mono	D3VO	0.08

Yang et al., "D3VO", CVPR '20

Dense Reconstructions from a Single Camera

Wimbauer et al., "MonoRec: Monocular Dense Reconstruction", CVPR '21

Dense Reconstructions from a Single Camera

Wimbauer et al., "MonoRec: Monocular Dense Reconstruction", CVPR '21

Daniel Cremers (TUM)

Recent Developments in Multi-view Reconstruction

Mildenhall et al., "Neural Radiance Fields", ECCV 2020

Daniel Cremers (TUM)

Recent Developments in Multi-view Reconstruction

Neural Radiance Fields for Novel View Synthesis

Mildenhall et al., "Neural Radiance Fields", ECCV 2020

Daniel Cremers (TUM)

Density-Fields for Single View Reconstruction

Wimbauer et al., "Behind the Scenes: Density Fields for Single View Reconstruction", CVPR '23

Density-Fields for Single View Reconstruction

0urs	NT IS THE OWNER		
All A Dick -	and the second second		
AND DESCRIPTION OF A DE	and the second second	THE OF	
THE REAL PROPERTY OF THE PROPE			
		a l	

Wimbauer et al., "Behind the Scenes: Density Fields for Single View Reconstruction", CVPR '23

Novel View Synthesis Results

Wimbauer et al., "Behind the Scenes: Density Fields for Single View Reconstruction", CVPR '23

Daniel Cremers (TUM)

Novel View Synthesis Results

Wimbauer et al., "Behind the Scenes: Density Fields for Single View Reconstruction", CVPR '23

Self-supervised Semantic Scene Completion

Color image

Complete Geometry and Semantics

(Depth / Lidar)

Hayler et al., "S4C: Self-Supervised Semantic Scene Completion", 3DV '24

Self-supervised Semantic Scene Completion

Hayler et al., "S4C: Self-Supervised Semantic Scene Completion", 3DV '24

Daniel Cremers (TUM)

NeRFs vs. Gaussian Splatting

NeRF Gaussian Splatting

Lee Alan Westover 1991, Kerbl et al., "3D Gaussian Splatting", Siggraph 2023

ð

(a)

Gaussian Splatting vs. NeRFs

Accuracy vs Efficiency

Daniel Cremers (TUM)

Recent Developments in Multi-view Reconstruction

Reconstruction from Casual Videos

AnyCam: Reconstruction from Casual Videos

Impressive results but Supervised training Expensive data collection Limited datasets Dataset biases Sim-to-real gap

AnyCam: Reconstruction from Casual Videos

Felix Wimbauer^{1,2,3} Weirong Chen^{1,2,3} Dominik Muhle^{1,2} Christian Rupprecht³ Daniel Cremers^{1,2}

¹Technical University of Munich ²MCML ³University of Oxford

Wimbauer et al., "AnyCam: Learning to Recover Camera Poses and Intrinsics from Casual Videos", CVPR '25

AnyCam is self-supervised on casual videos:

From YouTube

No ground truth data

Wimbauer et al., "AnyCam: Learning to Recover Camera Poses and Intrinsics from Casual Videos", CVPR '25

AnyCam: Reconstruction from Casual Videos

Wimbauer et al., "AnyCam: Learning to Recover Camera Poses and Intrinsics from Casual Videos", CVPR '25

Daniel Cremers (TUM)

Recent Developments in Multi-view Reconstruction

AnyCam: Reconstruction from Casual Videos

STATES -Wimbauer et al., "AnyCam: Learning to Recover Camera Poses and Intrinsics from Casual Videos", CVPR '25

Daniel Cremers (TUM)

Recent Developments in Multi-view Reconstruction

4D Reconstruction from Multiview Video

Oswald, Stühmer, Cremers, ECCV '14

Reconstructing Physical Simulations from Video

Weiss et al., CVPR 2020

Recent Developments in Multi-view Reconstruction

Reconstructing Physical Simulations from Video

Weiss et al., CVPR 2020

Reconstructing Physical Simulations from Video

Observation with an RGB-D Camera

Color

Filtered Depth

Weiss et al., CVPR 2020

Volume-Preserving Shape Interpolation

Eisenberger, Laehner, Cremers, SGP 2019

Volume-Preserving Shape Interpolation

Eisenberger, Laehner, Cremers, SGP 2019

4D Reconstruction from Sparse Observations

keyframe point clouds keyframe kinect data

generated intermediate frames

4D Reconstruction from Sparse Observations

Geometrical Constraints

- Normal deformation constraint
- Level set equation constraint
- Matching loss

Physical Constraints

- Spatial smoothness velocity
- Volume preserving deformation
- Stretching constraint
- Distortion constraint

4D Reconstruction from Sparse Observations

Large deformation

TwoSquared: 4D Generation from 2D Image Pairs

2D input images:

Sang et al., "TwoSquared: 4D Generation from 2D Image Pairs", arxiv '25

Daniel Cremers (TUM)

TwoSquared: 4D Generation from 2D Image Pairs

2D input images:

Lu Sang

Sang et al., "TwoSquared: 4D Generation from 2D Image Pairs", arxiv '25

TwoSquared: 4D Generation from 2D Image Pairs

Lu Sang

Sang et al., "TwoSquared: 4D Generation from 2D Image Pairs", arxiv '25

Event Cameras

Lichtsteiner, Posch, Dellbrück 2006, IEEE J. Solid-State Circuits 2008

D Weikersdorfer, DB Adrian, D Cremers, J Conradt, "Event-based 3D SLAM with a depth-augmented dynamic vision sensor", ICRA 2014.

H Kim, S Leutenegger, AJ Davison, "Real-Time 3D Reconstruction and 6-DoF Tracking with an Event Camera", ECCV 2016.

Approach to Event-based 6-DOF Parallel Tracking and Mapping in Real-

time", RAL Monocular event-only

AR Vidal, H Rebecq, T Horstschaefer, D Scaramuzza, "Ultimate SLAM? Combining event **VISUAL OCOMETRY?** in HDR and highspeed scenarios", RAE 2018.

W Guan, P Chen, Y Xie, P Lu, "PI-evio: Robust monocular event-based visual inertial odometry with point and line features", IEEE Aut. Sci. Eng. 2022.

P Chen, W Guan, P Lu, "Esvio: Event-based stereo visual inertial odometry", IEEE Aut. Sci. Eng. 2023.

DEVO: Deep Event Visual Odometry

Klenk, Motzet, Koestler, Cremers, "Deep Event Visual Odometry", 3DV 2024

DEVO: Qualitative Evaluation

Klenk, Motzet, Koestler, Cremers, "Deep Event Visual Odometry", 3DV 2024

Daniel Cremers (TUM)

DEVO: Qualitative Evaluation

Klenk, Motzet, Koestler, Cremers, "Deep Event Visual Odometry", 3DV 2024

Daniel Cremers (TUM)

(a) left visual frame

(c) left event frame

(b) right visual frame

(d) right event frame

Klenk, Chui, Demmel, Cremers, "TUM-VIE: The TUM stereo visual-inertial event dataset", IROS 2021

The TUM VIE Dataset

Klenk, Chui, Demmel, Cremers, "TUM-VIE: The TUM stereo visual-inertial event dataset", IROS 2021.

Performance across 7 Datasets

SE3 Labs: Startup on Spatial AI

Simon Klenk

Daniel Cremers

Lukas Koestler

Interested in joining us?

Daniel Cremers (TUM)

Summary

DM-VIO for visual-inertial odometry

Deep & direct visual SLAM

Semantic scene completion

3D semantic mapping

4D reconstruction from sparse data

Monoocular dense mapping

Recent Developments in Multi-view Reconstruction