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Multiple-View Geometry

In this section, we deal with the problem of 3D reconstruction
given multiple views of a static scene, either obtained
simultaneously, or sequentially from a moving camera.

The key idea is that the three-view scenario allows to obtain
more measurements to infer the same number of 3D
coordinates. For example, given two views of a single 3D point,
we have four measurements (x- and y-coordinate in each
view), while the three-view case provides 6 measurements per
point correspondence. As a consequence, the estimation of
motion and structure will generally be more constrained when
reverting to additional views.

The three-view case has traditionally been addressed by the
so-called trifocal tensor [Hartley ’95, Vieville ’93] which
generalizes the fundamental matrix. This tensor – as the
fundamental matrix – does not depend on the scene structure
but rather on the inter-frame camera motion. It captures a
trilinear relationship between three views of the same 3D point
or line [Liu, Huang ’86, Spetsakis, Aloimonos ’87].
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Trifocal Tensor versus Multiview Matrices

Traditionally the trilinear relations were captured by
generalizing the concept of the Fundamental Matrix to that of a
Trifocal Tensor. It was developed among others by [Liu and
Huang ’86], [Spetsakis, Aloimonos ’87]. The use of tensors
was promoted by [Vieville ’93] and [Hartley ’95]. Bilinear,
trilinear and quadrilinear constraints were formulated in [Triggs
’95]. This line of work is summarized in the books:

Faugeras and Luong, “The Geometry of Multiple Views”, 2001
and

Hartley and Zisserman, “Multiple View Geometry”, 2001, 2003.

In the following, however, we stick with a matrix notation for the
multiview scenario. This approach makes use of matrices and
rank constraints on these matrices to impose the constraints
from multiple views. Such rank constraints were used by many
authors, among others in [Triggs ’95] and in [Heyden, Åström
’97]. This line of work is summarized in the book

Ma, Soatto, Kosecka, Sastry, “An Invitation to 3D Vision”, 2004.
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Preimage from Multiple Views

A preimage of multiple images of a point or a line is the
(largest) set of 3D points that gives rise to the same set of
multiple images of the point or the line.

For example, given the two images ℓ1 and ℓ2 of a line L, the
preimage of these two images is the intersection of the planes
P1 and P2, i.e. exactly the 3D line L = P1 ∩ P2.

In general, the preimage of multiple images of points and lines
can be defined by the intersection:

preimage(x1, . . . ,xm) = preimage(x1) ∩ · · · ∩ preimage(xm),

preimage(ℓ1, . . . , ℓm) = preimage(ℓ1) ∩ · · · ∩ preimage(ℓm).

The above definition allows us to compute preimages for any
set of image points or lines. The preimage of multiple image
lines, for example, can be either an empty set, a point, a line or
a plane, depending on whether or not they come from the
same line in space.
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Preimage and Coimage of Points and Lines

Images of a point p on a line L:

• Preimages P1 and P2 of the image lines should intersect in
the line L.

• Preimages of the two image points x1 and x2 should
intersect in the point p.

• Normals ℓ1 and ℓ2 define the coimages of the line L.
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Preimage and Coimage of Points and Lines

For a moving camera at time t , let x(t) denote the image
coordinates of a 3D point X in homogeneous coordinates:

λ(t)x(t) = K (t)Π0g(t)X ,

where λ(t) denotes the depth of the point, K (t) denotes the
intrinsic parameters, Π0 the generic projection, and

g(t) =
(

R(t) T (t)
0 1

)
∈ SE(3),

denotes the rigid body motion at time t .

Let us consider a 3D line L in homogeneous coordinates:

L = {X | X = X 0 + µV , µ ∈ R} ⊂ R4,

where X 0 = [X0,Y0,Z0,1]⊤ ∈ R4 are the coordinates of the
base point p0 and V = [V1,V2,V3,0]⊤ ∈ R4 is a nonzero vector
indicating the line direction.
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Preimage and Coimage of Points and Lines

The preimage of L with respect to the image at time t is a plane
P with normal ℓ(t), where P = span(ℓ̂). The vector ℓ(t) is
orthogonal to all points x(t) of the line:

ℓ(t)⊤x(t) = ℓ(t)⊤K (t)Π0g(t)X = 0.

Assume we are given a set of m images at times t1, . . . , tm
where

λi = λ(ti), x i = x(ti), ℓi = ℓ(ti), Πi = K (ti)Π0g(ti).

With this notation, we can relate the i-th image of a point p to
its world coordinates X :

λix i = ΠiX ,

and the i-th coimage of a line L to its world coordinates (X 0,V ):

ℓ⊤i ΠiX 0 = ℓ⊤i ΠiV = 0.
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From Preimages to Rank Constraints

The above equations contain the 3D parameters of points and
lines as unknowns. As in the two-view case, we wish to
eliminate these unknowns so as to obtain relationships
between the 2D projections and the camera parameters.

In the two-view case an elimination of the 3D coordinates lead
to the epipolar constraint for the essential matrix E or (in the
uncalibrated case) the fundamental matrix F . The 3D
coordinates (depth values λi associated with each point) could
subsequently obtained from another constraint.

There exist different ways to eliminate the 3D parameters
leading to different kinds of constraints which have been
studied in Computer Vision.

A systematic elimination of these constraints will lead to a
complete set of conditions.
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Point Features

Consider images of a 3D point X seen in multiple views:

Iλ⃗ ≡


x1 0 · · · 0
0 x2 0 0
...

...
. . .

...
0 0 · · · xm




λ1
λ2
...
λm

 =


Π1
Π2
...

Πm

X ≡ ΠX ,

which is of the form
Iλ⃗ = ΠX ,

where λ⃗ ∈ Rm is the depth scale vector, and Π ∈ R3m×4 the
multiple-view projection matrix associated with the image
matrix I ∈ R3m×m.

Note that apart from the 2D coordinates I, everything else in
the above equations is unknown. As in the two-view case, the
goal is to decouple the above equation into constraints which
allow to separately recover the camera displacements Πi on
one hand and the scene structure λi and X on the other hand.
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Point Features

Every column of I lies in a four-dimensional space spanned by
columns of the matrix Π. In order to have a solution to the
above equation, the columns of I and Π must therefore be
linearly dependent. In other words, the matrix

Np ≡ (Π, I) =


Π1 x1 0 · · · 0
Π2 0 x2 0 0
...

...
...

. . .
...

Πm 0 0 · · · xm

 ∈ R3m×(m+4)

must have a nontrivial right null space. For m ≥ 2 (i.e.
3m ≥ m + 4), full rank would be m + 4. Linear dependence of
columns therefore implies the rank constraint:

rank(Np) ≤ m + 3.

In fact, the vector u ≡ (X⊤,−λ⃗⊤)⊤ ∈ Rm+4 is in the right null
space, as Npu = 0.
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Point Features

For a more compact formulation of the above rank constraint,
we introduce the matrix

I⊥ ≡


x̂1 0 · · · 0
0 x̂2 · · · 0
...

...
. . .

...
0 0 · · · x̂m

 ∈ R3m×3m,

which has the property of “annihilating” I:

I⊥I = 0,

we can premultiply the above equation to obtain

I⊥ΠX = 0.
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Point Features

Thus the vector X is in the null space of the matrix

Wp ≡ I⊥Π =


x̂1Π1
x̂2Π2

...
x̂mΠm

 ∈ R3m×4.

To have a nontrivial solution, we must have

rank(Wp) ≤ 3.

If all images x i are from a single 3D point X , then the matrix
Wp should only have a one-dimensional null space.
Given m images x i ∈ R3 of a point p with respect to m camera
frames Πi , we must have the rank condition

rank(Wp) = rank(Np)− m ≤ 3.
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Rank Constraints: Geometric Interpretation

In the case of a point X , we had the equation

WpX = 0, with Wp =


x̂1Π1
x̂2Π2

...
x̂mΠm

 ∈ R3m×4.

Since all matrices x̂ i have rank 2, the number of independent
rows in Wp is at most 2m. These rows define a set of 2m
planes. Since WpX = 0, the point X is in the intersection of all
these planes. In order for the 2m planes to have a unique
intersection, we need to have rank(Wp) = 3.
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Rank Constraints: Geometric Interpretation

Preimage of two image points.

The rows of the matrix Wp correspond to the normal vectors of
four planes. The (nontrivial) rank constraint states that these
four planes have to intersect in a single point.
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The Multiple-view Matrix of a Point

In the following, the rank constraints will be rewritten in a more
compact and transparent manner. Let us assume we have m
images, the first of which is in world coordinates. Then we have
projection matrices of the form

Π1 = [I,0], Π2 = [R2,T2], . . . , Πm = [Rm,Tm] ∈ R3×4,

which model the projection of a point X into the individual
images.

In general for uncalibrated cameras (i.e. Ki ̸= I), Ri will not be
an orthogonal rotation matrix but rather an arbitrary invertible
matrix.

Again, we define the matrix Wp as follows:

Wp ≡ I⊥Π =


x̂1Π1
x̂2Π2

...
x̂mΠm

 ∈ R3m×4.
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The Multiple-view Matrix of a Point

The rank of the matrix Wp is not affected if we multiply by a
full-rank matrix Dp ∈ R4×5 as follows:

WpDp =


x̂1Π1
x̂2Π2

...
x̂mΠm


(

x̂1 x1 0
0 0 1

)
=


x̂1x̂1 0 0

x̂2R2x̂1 x̂2R2x1 x̂2T2
x̂3R3x̂1 x̂3R3x1 x̂3T3

...
...

...
x̂mRmx̂1 x̂mRmx1 x̂mTm

 .

This means that rank(Wp) ≤ 3 if and only if the submatrix

Mp ≡


x̂2R2x1 x̂2T2
x̂3R3x1 x̂3T3

...
...

x̂mRmx1 x̂mTm

 ∈ R3(m−1)×2

has rank(Mp) ≤ 1.
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The Multiple-view Matrix of a Point

The matrix

Mp ≡


x̂2R2x1 x̂2T2
x̂3R3x1 x̂3T3

...
...

x̂mRmx1 x̂mTm

 ∈ R3(m−1)×2

is called the multiple-view matrix associated with a point p. It
involves both the image x1 in the first view and the coimages
x̂ i in the remaining views.

In summary:

For multiple images of a point p the matrices Np,Wp and Mp
satisfy:

rank(Mp) = rank(Wp)− 2 = rank(Np)− (m + 2) ≤ 1.
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Multiview Matrix: Geometric Interpretation

Let us look into the geometric information contained in the
multiple-view matrix

Mp ≡


x̂2R2x1 x̂2T2
x̂3R3x1 x̂3T3

...
...

x̂mRmx1 x̂mTm

 ∈ R3(m−1)×2.

The constraint rank(Mp) ≤ 1 implies that the two columns are
linearly dependent. In fact we have
λ1x̂ iRix1 + x̂ iTi = 0, i = 2, . . . ,m which yields

Mp

(
λ1

1

)
= 0.

Therefore the coefficient capturing the linear dependence is
simply the distance λ1 of the point p from the first camera
center. In other words, the multiple-view matrix captures
exactly the information about a point p that is missing from a
single image, but encoded in multiple images.
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Relation to Epipolar Constraints

For the multiple-view matrix

Mp ≡


x̂2R2x1 x̂2T2
x̂3R3x1 x̂3T3

...
...

x̂mRmx1 x̂mTm

 ∈ R3(m−1)×2.

to have rank(Mp) = 1, it is necessary that the pair of vectors
x̂ iTi and x̂ iRix1 to be linearly dependent for all i = 2, . . . ,m.
This gives the epipolar constraints

x⊤
i T̂iRix1 = 0

between the first and the i-th image. (Proof see next slide)

Yet, we shall see that the multiview constraint provides more
information than the pairwise epipolar constraints.
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Relation to Epipolar Constraints
In the previous slide, we claimed that the linear dependence of
x̂ iTi and x̂ iRix1 gives rise to the epipolar constraint
x⊤

i T̂iRix1 = 0. In the following, we shall give a proof of this
statement which provides an intuitive geometric understanding
of this relationship.

Assume the two vectors x̂ iTi and x̂ iRix1 are dependent, i.e.
there is a scalar γ, such that

x̂ iTi = γx̂ iRix1.

Since x̂ iTi ≡ x i × Ti is proportional to the normal on the plane
spanned by x i and Ti , and x̂ iRix1 is proportional to the normal
spanned by x i and Rix1, the linear dependence is equivalent
to saying that the three vectors x i , Ti and Rix1 are coplanar.

This again is equivalent to saying that the vector x i is
orthogonal to the normal on the plane spanned by the vectors
Ti and Rix1, i.e.

x⊤
i (Ti × Rix1) = x⊤

i T̂iRix1 = 0.
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Analysis of the Multiple-view Constraint
For any nonzero vectors ai ,bi ∈ R3, i = 1,2, . . . ,n, the matrix

a1 b1
a2 b2
...

...
an bn

 ∈ R3n×2

is rank-deficient if and only if aib⊤
j − bia⊤

j = 0 for all
i , j = 1, . . . ,n. We will not prove this statement. Applied to the
rank constraint on Mp we get:

x̂ iRix1(x̂ jTj)
⊤ − x̂ iTi(x̂ jRjx1)

⊤ = 0,

which gives the trilinear constraint

x̂ i(Tix⊤
1 R⊤

j − Rix1T⊤
j )x̂ j = 0.

This is a matrix equation giving 3 × 3 = 9 scalar trilinear
equations, only four of which are linearly independent.
One can show that – except for degeneracies – the bilinear
(epipolar) constraints relating two views are already contained
in these trilinear constraints obtained for the multiview scenario.
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Uniqueness of the Preimage

The bilinear and trilinear constraints help to assure the
uniqueness of the preimage of a point observed in three
images. Let x1,x2,x3 ∈ R3 be the 2D coordinates in three
camera frames with distinct optical centers.

Proposition 1: If the three images satisfy the pairwise epipolar
constraints

x⊤
i T̂ijRijx j = 0, i , j = 1,2,3,

then a unique preimage is determined except if the three lines
associated to image points x1,x2,x3 are coplanar – see the
examples on slides 24 and 25. Here Tij and Rij refer to the
transition between frames i and j .

Proposition 2: If these vectors satisfy all trilinear constraints

x̂ j(Tjix⊤
i R⊤

ki − Rjix iT⊤
ki )x̂k = 0, i , j , k = 1,2,3,

then a unique preimage is determined unless the three lines
associated to image points x1,x2,x3 are colinear.

We will not prove these statements.
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Degeneracies for the Bilinear Constraints

In the above example, the point p lies in the plane spanned by
the three optical centers which is also called the trifocal plane.
In this case, all pairs of lines do intersect, yet it does not imply
a unique 3D point p (a unique preimage). In practice this
degenerate case arises rather seldom.
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Degeneracies for the Bilinear Constraints

In the above example, the optical centers lie on a straight line
(rectilinear motion). Again, all pairs of lines may intersect
without there being a unique preimage p.
This case is frequent in applications when the camera moves
in a straight line (e.g. a car on a highway). Then the epipolar
constraints will not allow a unique reconstruction.

Fortunately, the trilinear constraint assures a unique preimage
(unless p is also on the same line with the optical centers).
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Uniqueness of the Preimage

Using the multiple-view matrix we obtain a more general and
simpler characterization regarding the uniqueness of the
preimage:

Given m vectors representing the m images of a point in m
views, they correspond to the same point in the 3D space if the
rank of the Mp matrix relative to any of the camera frames is
one. If the rank is zero, the point is determined up to the line on
which all the camera centers must lie.

In summary we get:

rank(Mp)=2 ⇒ no point correspondence & empty preimage

rank(Mp)=1 ⇒ point correspondence & unique preimage

rank(Mp)=0 ⇒ point correspondence & preimage not unique

With these constraints we could decide which features to match
for establishing point correspondence over multiple frames.
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Multiple-view Factorization of Point Features

The rank condition on the multiple-view matrix captures all the
constraints among multiple images of a point. In principle, one
could perform reconstruction by maximizing some global
objective function subject to the rank condition. This would
lead to a nonlinear optimization problem analogous to the
bundle adjustment in the two-view case.

Alternatively, one can aim for a similar separation of structure
and motion as done for the two-view case in the eight-point
algorithm. Such an algorithm shall be detailed in the following.
One should point out that this approach does not necessarily
lead to a practical algorithm as the spectral approaches do not
imply optimality in the context of noise and uncertainty.
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Multiple-view Factorization of Point Features

Suppose we have m images x j
1, . . . ,x

j
m of n points pj and we

want to estimate the unknown projection matrix Π.
The condition rank(Mp) ≤ 1 states that the two columns of Mp
are linearly dependent. For the j-th point pj this implies

x̂ j
2R2x j

1

x̂ j
3R3x j

1
...

x̂ j
mRmx j

1

+ αj


x̂ j

2T2

x̂ j
3T3
...

x̂ j
mTm

 = 0 ∈ R3(m−1)×1,

for some parameters αj ∈ R, j = 1, . . . ,n. Each row in the
above equation can be obtained from λj

ix
j
i = λj

1Rix
j
1 + Ti ,

multiplying by x̂ j
i :

x̂ j
iRix

j
1 + x̂ j

iTi/λ
j
1 = 0.

Therefore, αj = 1/λj
1 is nothing but the inverse of the depth of

point pj with respect to the first frame.
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Motion Estimation from Known Structure

Assume we have the depth of the points and thus their inverse
αj (i.e. known structure). Then the above equation is linear in
the camera motion parameters Ri and Ti . Using the stack
notation Rs

i = [r11, r21, r31, r12, r22, r32, r13, r23, r33]
⊤ ∈ R9 and

Ti ∈ R3, we have the linear equation system

Pi

(
Rs

i
Ti

)
=


x1

1
⊤ ⊗ x̂1

i α1x̂1
i

x2
1
⊤ ⊗ x̂2

i α2x̂2
i

...
...

xn
1
⊤ ⊗ x̂n

i αnx̂n
i


(

Rs
i

Ti

)
= 0 ∈ R3n.

One can show that the matrix Pi ∈ R3n×12 is of rank 11 if more
than n = 6 points in general position are given. In that case the
null space of Pi is onedimensional and the projection matrix
Πi = (Ri ,Ti) is given up to a scale factor. In practice one would
use more than 6 points, obtain a full-rank matrix and compute
the solution by a singular value decomposition (SVD).
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Structure Estimation from Known Motion

In turn, if the camera motion Πi = (Ri ,Ti), i = 1, . . . ,m is
known, we can estimate the structure (depth parameters
αj , j = 1, . . . ,m). The least squares solution for the above
equation is given by:

αj = −
∑m

i=2(x̂
j
iTi)

⊤x̂ j
iRix

j
1∑m

i=2 ∥x̂ j
iTi∥2

, j = 1, . . . ,n.

In this way one can iteratively estimate structure and motion,
estimating one while keeping the other fixed.

For initialization one could apply the eight-point algorithm to
the first two images to obtain an estimate of the structure
parameters αj .

While the equation for Πi makes use of the two frames 1 and i
only, the structure parameter estimation takes into account all
frames. This can be done either in batch mode or recursively.

As for the two-view case, such spectral approaches do not
guarantee optimality in the presence of noise and uncertainty.
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Line Features

We can derive a similar rank constraint for lines. As we saw
above, for the coimages ℓi , i = 1, . . . ,m of a line L spanned by
a base X 0 and a direction V we have:

ℓ⊤i ΠiX 0 = ℓ⊤i ΠiV = 0.

Therefore the matrix

Wl ≡


ℓ⊤1 Π1
ℓ⊤2 Π2

...
ℓ⊤mΠm

 ∈ Rm×4

must satisfy the rank constraint

rank(Wl) ≤ 2,

since the null space of Wl contains the two vectors X 0 and V .
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Rank Constraints: Geometric Interpretation

In the case of a line L in two views, we have the equation

rank(Wl) ≤ 2, with Wl =

(
ℓ⊤1 Π1

ℓ⊤2 Π2

)
∈ R2×4.

Clearly, we already have rank(Wl) ≤ 2, so there is no intrinsic
constraint on two images of a line: The preimage of two image
lines always contains a line. This is no longer true for three or
more images of a line, then the above constraint really
becomes meaningful.
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Rank Constraints: Geometric Interpretation

Preimage of two image lines.

For the case of a line observed from two images, the rank
constraint is always fulfilled. Geometrically this states that the
two preimages of each line always intersect in some 3D line –
in this example either L or L′.
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Uniqueness of the Preimage

In the case of three or more images, the rank constraint is not
always fulfilled. In this example, it is not fulfilled. There is no

preimage: The lines L2 and L3 don’t coincide.
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Uniqueness of the Preimage

Uniqueness of the preimage: The lines L2 and L3 coincide.
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Uniqueness of the Preimage

It is shown in Ma, Soatto, Kosecka, Sastry, 2002 that the rank
constraints on Wl can be further compressed into a multiview
matrix Ml ∈ R(m−1)×4.

Overall we have the following cases:

rank(Ml)=2 ⇒ no line correspondence, no preimage

rank(Ml)=1 ⇒ line correspondence & unique preimage

rank(Ml)=0 ⇒ line correspondence & preimage not unique
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Summary

One can generalize the two-view scenario to that of
simultaneously considering m ≥ 2 images of a scene. The
intrinsic constraints among multiple images of a point or a line
can be expressed in terms of rank conditions on the matrix N,
W or M.

The relationship among these rank conditions is as follows:

(Pre)image coimage Jointly

Point rank(Np) ≤ m + 3 rank(Wp) ≤ 3 rank(Mp) ≤ 1

Line rank(Nl) ≤ 2m + 2 rank(Wl) ≤ 2 rank(Ml) ≤ 1

These rank conditions capture the relationships among
corresponding geometric primitives in multiple images. They
impose the existence of unique preimages (up to degenerate
cases). Moreover, they give rise to natural factorization-based
algorithms for multiview recovery of 3D structure and motion
(i.e. generalizations of the eight-point algorithm).
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