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Optimality in Noisy Real World Conditions

In the previous chapters we discussed linear approaches to
solve the structure and motion problem. In particular, the
eight-point algorithm provides closed-form solutions to
estimate the camera parameters and the 3D structure, based
on singular value decomposition.

However, if we have noisy data X, X> (correspondences not
exact or even incorrect), then we have no guarantee

e that R and T are as close as possible to the true solution.

¢ that we will get a consistent reconstruction.
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Statistical Approaches to Cope with Noise

The linear approaches are elegant because optimal solutions
to respective problems can be computed in closed form.

However, they often fail when dealing with noisy and imprecise

point locations. Since measurement noise is not explicitly
considered or modeled, such spectral methods often provide
suboptimal performance in noisy real-world conditions.

In order to take noise and statistical fluctuation into account,
one can revert to a Bayesian formulation and determine the
most likely camera transformation R, T and ‘true’ 2D
coordinates x given the measured coordinates X, by
performing a maximum aposteriori estimate:

arg max P(x,R, T|X)=arg max P(x|x,R,T)P(x,R, T
g max. ( | X) = arg 12X (x| ) P( )

) ) ) i

This approach will however involve modeling probability
densities P on the fairly complicated space SO(3) x S? of
rotation and translation parameters, as R € SO(3) and T € §?
(3D translation with unit length).
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Bundle Adjustment and Nonlinear Optimization

Under the assumption that the observed 2D point coordinates
X are corrupted by zero-mean Gaussian noise, maximum
likelihood estimation leads to bundle adjustment:

Z % -

=

2

E(R T, Xi,....X x(X)° + | %, — =(R, T, X;)|

It aims at minimizing the reprojection error between the

observed 2D coordinates X: and the projected 3D coordinate
X; (w.r.t. camera 1). Here n(R, T, X;) denotes the perspective
projection of X; after rotation and translation.

For the general case of mimages, we get:

RI) 7-I7X)

m N
E{R;, Titi=t. m: {Xj}j=1.N) = Z ZG,,‘X

i=1 j=1

with Ty =0and Ry = 1. §; = 1 if point j is visible in image /,
0 = 0 else. The above problems are non-convex.
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Different Parameterizations of the Problem

The same optimization problem can be parameterized
differently. For example, we can introduce X’ to denote the true
2D coordinate associated with the measured coordinate ¥/:

N
E({X) X bjmrn, B T) =D 11X =% 2+ |13 —m (RN X+ T) 2.
j=1

Alternatively, we can perform a constrained optimization by
minimizing a cost function (similarity to measurements):
2

N
E({x}j=1.n, R, T) = ZZ X — %12

j=1 i=1
subject to (consistent geometry):

X' TRx, =0, x'ez=1, xez=1, j=1,...,N.
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On the History of Bundle Adjustment

Bundle adjustment emerged in the field of photogrammetry and
geodesy. The aim is to jointly estimate the 3D coordinates of
points and the camera parameters — typically the rigid body
motion, but sometimes also intrinsic calibration parameters or
radial distortion. Different models of the noise in the observed
2D points lead to different cost functions, zero-mean Gaussian
noise being the most common assumption.

The approach is called bundle adjustment (Bindelausgleich)
because it aims at adjusting the bundles of light rays emitted
from the 3D points. The nonconvex optimization problems are
typically solved with nonlinear least squares estimation.

A good overview can be found in:
Triggs, McLauchlan, Hartley, Fitzgibbon, “Bundle Adjustment —
A Modern Synthesis”, ICCV Workshop 1999.

The fields of geodesy and photogrammetry have a long
tradition with many pioneers. The following slides lists some of
the most influential ones.
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http://lear.inrialpes.fr/pubs/2000/TMHF00/Triggs-va99.pdf
http://lear.inrialpes.fr/pubs/2000/TMHF00/Triggs-va99.pdf

Pioneers of Photogrammetry and Bundle Adjustment

Carl Maximilian von Bauernfeind, founder of TU Munich,
was a geodesist. He strongly believed in bringing together
engineers and applied mathematicians.

Eduard Dolezal founded the International Society for
Photogrammetry and Remote Sensing (Vienna 1910).

Sebastian Finsterwalder pioneered analytical
photogrammetry — orientation estimations from feature
points. The reconstruction of 3D maps from camera
images often took years of calculations.

The mathematician Karl Rinner advocated the use of
vector algebra and projective geometry.

Otto von Gruber developed linearization techniques for
nonlinear least squares problems.

Helmut H. Schmid developed nonlinear least-squares
estimation of 3D point and camera parameters. He moved
to the US in 1945 and together with Duane C. Brown they
deployed these methods on the largest computers of their
time at the Ballistic Research Laboratories (1952-55).
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Nonlinear Programming

Nonlinear programming denotes the process of iteratively
solving a nonlinear optimization problem, i.e. a problem
involving the maximization or minimization of an objective
function over a set of real variables under a set of equality or
inequality constraints.

There are numerous methods and techniques. Good
overviews of respective methods can be found for example in
Bersekas (1999) “Nonlinear Programming”, Nocedal & Wright
(1999), “Numerical Optimization” or Luenberger & Ye (2008),
“Linear and nonlinear programming”.

Depending on the cost function, different algorithms are
employed. In the following, we will discuss (nonlinear) least
squares estimation and several popular iterative techniques for
nonlinear optimization:

¢ the gradient descent,

¢ Newton methods,

¢ the Gauss-Newton algorithm,

¢ the Levenberg-Marquardt algorithm.
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Gradient Descent
Gradient descent or steepest descent is a first-order
optimization method. It aims at computing a local minimum of a
(generally) non-convex cost function by iteratively stepping in
the direction in which the energy decreases most. This is given
by the negative energy gradient.

To minimize a real-valued cost E : R" — R, the gradient flow
for E(x) is defined by the differential equation:

Discretization: Xk = Xk — €2 (Xk),

E(x

i

2

o e O o

k=0,1,2,....
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Gradient Descent
Under certain conditions on E(x), the gradient descent iteration

Xk+1:Xk*€a(Xk)7 k:0,1,2,...

converges to a local minimum. For the case of convex E, this
will also be the global minimum. The step size e can be chosen
differently in each iteration.

Gradient descent is a popular and broadly applicable method.
It is typically not the fastest solution to compute minimizers
because the asymptotic convergence rate is often inferior to
that of more specialized algorithms. First-order methods with
optimal convergence rates were pioneered by Yuri Nesterov.

In particular, highly anisotropic cost functions (with strongly
different curvatures in different directions) require many
iterations and trajectories tend to zig-zag. Locally optimal step
sizes in each iteration can be computed by line search. For
specific cost functions, alternative techniques such as the
conjugate gradient method, Newton methods, or the BFGS
method are preferable.
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Linear Least Squares Estimation

Ordinary least squares or linear least squares is a method to
for estimating a set of parameters x € R in a linear regression
model. Assume for each input vector b; € R?,i € {1,..,n}, we
observe a scalar response a; € R. Assume there is a linear
relationship of the form

aj = b,-TXJrT]i

with an unknown vector x € R? and zero-mean Gaussian noise
n ~ N(0, X) with a diagonal covariance matrix of the form

¥ = o2l,. Maximum likelihood estimation of x leads to the
ordinary least squares problem:

min > (ai—x"b)? = (a- Bx)'(a— Bx).

Linear least squares estimation was introduced by Legendre
(1805) and Gauss (1795/1809). When asking for which noise
distribution the optimal estimator was the arithmetic mean,
Gauss invented the normal distribution.

Bundle Adjustment &
Nonlinear Optimizatior

Prof. Daniel Cremers

Optimality in Noisy
Real World Conditions

Bundle Adjustment
Nonlinear Optimization

Gradient Descent

Newton Methods

The Gauss-Newton
Algorithm

The
Levenberg-Marquardt
Algorithm

Numerics of Bundle
Adjustment

Summary

Example Applications

updated June 3,2025 13/33



Linear Least Squares Estimation

For general X, we get the generalized least squares problem:

min(a - Bx)'x7"(a- Bx).

This is a quadratic cost function with positive definite £~'. It
has the closed-form solution:

% = argmin(a— Bx)"£7"(a— Bx)
X
=(B'r'By"'B'x'a
If there is no correlation among the observed variances, then
the matrix X is diagonal. This case is referred to as weighted
least squares:

mXinZW,'(a,‘ *XTbi)Z, 2
i

with w; = o;7“.

For the case of unknown matrix X, there exist iterative
estimation algorithms such as feasible generalized least
squares or iteratively reweighted least squares.
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lteratively Reweighted Least Squares

The method of iteratively reweighted least squares aims at
minimizing generally non-convex optimization problems of the

form
min E wi(x)|a; — fi(x)[?,
]

with some known weighting function w;(x). A solution is
obtained by iterating the following problem:

X1 = argmin Z wi(xt) |aj — f;(x)[?
I

For the case that f; is linear, i.e. fi(x) = x " b;, each subproblem

Xt1 = argmin Z wi(xt) |ai — x " bj|?
1

is simply a weighted least squares problem that can be solved
in closed form. Nevertheless, this iterative approach will
generally not converge to a global minimum of the original
(nonconvex) problem.
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Nonlinear Least Squares Estimation

Nonlinear least squares estimation aims at fitting observations
(ai, bi) with a nonlinear model of the form a; ~ f(b;, x) for some

function f parameterized with an unknown vector x € RY.
Minimizing the sum of squares error

mXin Z ri(x)?,
I

is generally a non-convex optimization problem.

with ri(x) = a; — f(b;, x),

The optimality condition is given by

or; .
— =0, V 1,..,d}.
irlaxj 9 ]6{,, }

Typically one cannot directly solve these equation. Yet, there

exist iterative algorithms for computing approximate solutions,
including Newton methods, the Gauss-Newton algorithm and
the Levenberg-Marquardt algorithm.

Bundle Adjustment &
Nonlinear Optimizatior

Prof. Daniel Cremers

Optimality in Noisy
Real World Conditions

Bundle Adjustment
Nonlinear Optimization

Gradient Descent

Newton Methods

The Gauss-Newton
Algorithm

The
Levenberg-Marquardt
Algorithm

Numerics of Bundle
Adjustment

Summary

Example Applications

updated June 3,2025 16/33



Newton Methods for Optimization
Newton methods are second order methods: In contrast to

first-order methods like gradient descent, they also make use

of second derivatives. Geometrically, Newton method

iteratively approximate the cost function E(x) quadratically and

takes a step to the minimizer of this approximation.

Let x; be the estimated solution after t iterations. Then the

Taylor approximation of E(x) in the vicinity of this estimate is:

E(x)~E(x)+9g"(x —x)+ %(X —x) " H(x — xy),

The first and second derivative are denoted by the Jacobian
g = dE/dx(x;) and the Hessian matrix 0 E /dx?(x;). For this
second-order approximation, the optimality condition is:

dE
a—Q+H(X*Xt)—O (*)

Setting the next iterate to the minimizer x leads to:

—1
X1 =xt—H 'g.
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Newton Methods for Optimization

In practice, one often choses a more conservative step size
7€ (0,1):
—1
Xtp1 =Xt —vH g

When applicable, second-order methods are often faster than
first-order methods, at least when measured in number of
iterations. In particular, there exists a local neighborhood
around each optimum where the Newton method converges
quadratically for v = 1 (if the Hessian is invertible and Lipschitz
continuous).

For large optimization problems, computing and inverting the
Hessian may be challenging. Moreover, since this problem is
often not parallelizable, some second order methods do not
profit from GPU acceleration. In such cases, one can aim to
iteratively solve the extremality condition (x).

In case that H is not positive definite, there exist quasi-Newton
methods which aim at approximating H or H~ " with a positive
definite matrix.
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The Gauss-Newton Algorithm
The Gauss-Newton algorithm is a method to solve non-linear
least-squares problems of the form:

mXinZI’,-(X)2

It can be derived as an approximation to the Newton method.
The latter iterates:
X1 =x—Hg.

with the gradient g:

and the Hessian H:
or; ar; B2r;
=2 — .
Hie = Z (8)(, ox. " OX;0c
Dropping the second order term leads to the approximation:

. ori
ij ~ 2 E ¢./,'/'J,‘k7 with J,] = a—xl
i vl
i
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The Gauss-Newton Algorithm
The approximation

ar

with the Jacobian J = —,
ax

H~2J"J,

together with g = 2J " r, leads to the Gauss-Newton algorithm:

X1 =X+ A, withA=—JTI)Jr

In contrast to the Newton algorithm, the Gauss-Newton
algorithm does not require the computation of second
derivatives. Moreover, the above approximation of the Hessian
is by construction positive definite.

This approximation of the Hessian is valid if

62r,-
8Xjan

or or;

(9Xj 3Xk

I

)

This is the case if the residuum r; is small or if it is close to
linear (in which case the second derivatives are small).
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The Levenberg-Marquardt Algorithm
The Newton algorithm

X1 =x—H g,
can be modified (damped):
X1 =X — (H+ )\In)_1g,

to create a hybrid between the Newton method (A = 0) and a
gradient descent with step size 1/ (for A — o0) .

In the same manner, Levenberg (1944) suggested to damp the
Gauss-Newton algorithm for nonlinear least squares:
. T -1 ,7
Xtp1 = X + A, with A =—(J' J+ X)) J'r.

Marquardt (1963) suggested a more adaptive component-wise
damping of the form:

A=—(J"J+ \diag(d"J)) U,

which avoids slow convergence in directions of small gradient.
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Bundle Adjustment: Derivation of the Normal Equation

Bundle adjustment can be expressed as a nonlinear least
squares problem of the form

Fix) = 5l I8 = 5 Il

with the vector x = (xp, X¢) containing the poses and
landmarks. Denoting the updates Ax, the linearization
r(x) =~ r’ + JAx,

together with a damping term, leads to the quadratic problem

i g1 e 9 (Rl 0 (3%) 1)

The optimality condition is given by the normal equation:

(we V) (%)= (%)
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The System Matrix Noniinear Optimisatior
Solving the normal equation requires the inversion of the Prof. Daniel Cremers
system matrix containing the matrices U, V and W, where V is
typically block-diagonal and easy to invert.

n i |
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The Schur Complement Trick
One can simplify the solution of the normal equation by means
of the Schur complement trick. Left-multiplication of the normal
equation with the invertible matrix

I —wv-1

0 / ’
S 0 Axy \ [ by— WVTh,
wt v AXp o bg ’

where S = U - WV~TWT is called the Schur complement. Itis
symmetric, positive definite and block structured.

We can therefore first estimate the typically small number of
pose parameter updates Ax, by solving the so-called reduced
camera system:

leads to

and subsequently plug these into the second equation to
compute the update of the depth parameters Ax,.
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Power Bundle Adjustment for Large Scale Reconstruction

The reduced camera system is commonly solved by an
iterative solver such as the conjugate gradient method. In the
paper Weber, Demmel, Chan, Cremers, CVPR 2023, we
instead propose a solution that is faster, more accurate and
more memory-efficient. To this end, we approximate the
inverse of the Schur complement by a matrix power series.

Let us recall the geometric series
ir’:—1 vre(-1,1).
: 1—r ’
i=0
It generalizes to matrices M € R™". If || M|| < 1 then:

m o0
(1-M)""'=>" M +R, with the residual R= > M,
i=0 i=m+1

where
M|

— 0.

<
IRI< =] me
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Power Bundle Adjustment for Large Scale Reconstruction

We approximate the inverse Schur complement with a matrix
power series. To this end, we rewrite the Schur matrix as:

S=U-WV "W =U(I-U"WV'WT).
Hence the inverse is given by
St'=@-uwv'whHtu.

Let 1 be an eigenvalue of U="WV~'WT. Then n € [0,1).
Therefore we can approximate:

m
SR> (WUTwvTtwTy U

i=0

This approximation of S~' merely requires matrix
multiplications. As a result, the updates for poses (in the
reduced camera system) and landmarks can be computed
much faster and in a more memory efficient way.
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Power Bundle Adjustment for Large Scale Reconstruction

x10° ladybug1197 x106 venicell02
sod| 1Y —— PoBA-32 (ours) —— PoBA-32 (ours)
] \ —— PoBA-64 (ours) —— PoBA-64 (ours)
a04[E v VBA32 | Lo lhait e V/BA-32
E R Ny
AN -—- V/BA-64 BA-64
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—-= ceres-explicit
-+ ceres-implicit

----- ceres-implicit
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T ARG i e s

0.0 2.5 5.0 7.5 10.0
time [s]

0 10 20 30
time [s]

Convergence plot of the bundle adjustment cost as a function of time
for the two problems “Ladybug” and “Venice”: The power bundle
adjustment method is significantly faster than existing methods, both
for a 32-bit and for a 64-bit implementation.

Weber, Demmel, Chan, Cremers, “Power BA”, CVPR 2023
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Power Bundle Adjustment for Large Scale Reconstruction

percentage

percentage

tolerance T = 0.1

tolerance T = 0.01

percentage

POBA-32 (ours) |

~ —— POBA-64 (ours)

VBA-32
--- VBA-64
— -~ ceres-explicit
ceres-implicit

relative time a
tolerance T = 0.003

relative time a
tolerance T = 0.001

1 2 5

relative time a

percentage

relative time a

Percentage of problems solved by a certain runtime for various
tolerance levels: For low and medium precision, Power BA is both
faster and more accurate, for high precision (7 = 0.003) it is faster,

but not more accurate. For very small tolerance (= = 0.001), the
baseline methods are more suitable.

Weber, Demmel, Chan, Cremers, “Power BA”, CVPR 2023
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Power Bundle Adjustment for Large Scale Reconstruction

12 - PoBA-32 (ours) . a4
PoBA-64 (ours)
_ 197 VBA-32 )
@ 8 VBA-64 e ®
ra ceres-explicit st
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Memory footprint of various bundle adjustment solvers as a function of
the number of observations: Power Bundle Adjustment is up to five
times more memory efficient than existing methods.

Weber, Demmel, Chan, Cremers, “Power BA”, CVPR 2023
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Summary

Bundle adjustment was pioneered for over a century as a
technique for structure and motion estimation in noisy
real-world conditions. It aims at estimating the locations of N
3D points X; and camera motions (R;, T;), given noisy 2D

projections x’,- in mimages.
The assumption of zero-mean Gaussian noise on the 2D

observations leads to the weighted nonlinear least squares
problem:

m N

ZZ&,,|x — (R, Ti, X)),

i=1 j=1

({RHT}I 1. ma{xj}j 1. N

with 6; = 1 if point j is visible in image /, 8; = 0 else.

Solutions of this nonconvex problem can be computed by
various iterative algorithms, most importantly the
Gauss-Newton algorithm or its damped version, the
Levenberg-Marquardt algorithm. For reasonable tolerance

levels, Power Bundle Adjustment is faster, more accurate and

more memory-efficient than baseline methods.
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Example I: From Internet Photo Collections...
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Flickr images for search term “Notre Dame”

Snavely, Seitz, Szeliski, “Modeling the world from Internet
photo collections,” IJCV 2008.
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...to Sparse Reconstructions

Snavely, Seitz, Szeliski, “Modeling the world from Internet
photo collections,” [JCV 2008.
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Example II: Realtime Structure and Motion

= -

d Found: SOB/ME3 251/340 46/66 50/98 Map: “3021P, L4KF

Klein & Murray, “Parallel Tracking and Mapping (PTAM) for
Small AR Workspaces,” ISMAR 2007.
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