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1. State the definition of a group

A group is a tuple of

• set M

• operation · : M →M ↑ M, (a, b) ↓↑ a · b

with the properties

• associative: ↔a, b ↗ M : (a · b) · c = a · (b · c)
• identity: ↘e ↗ M : ↔a ↗ M : a · e = a

• inverse: ↔a ↗ M : ↘a→1 ↗ M : a · a→1 = e

2. Let (M, ·) be a group, with the right identity e ↗ M , a · e = a, and the right inverse element

a→1 ↗ M , a · a→1 = e. Show that and the right identity is also the left identity and the right

inverse is also the left inverse element.

Left identity: Let, f · a = a. Use definition of right identity as well. f · e = e = f

Left inverse: Let, b · a = e. b = b · e = b · a · a→1 = ea→1 = a→1

3. Let (M, ·) be a group, show that the inverse element a→1 ↗ M of a ↗ M is unique Assume

there exists a c ↗ M with ac = e.

c = c · e = c(aa→1) = (ca)a→1 = a→1

4. Is the following statement correct? For groups, whose operation does not fulfil the commutative

property (e.g. matrix multiplication) the left and a right inverse elements are distinct.

Not correct, as shown in previous exercise. We showed it for all groups, so it also holds for

abelsch (commutative) groups.

5. Which of the following sets forms a group (with matrix-multiplication)? Prove or disprove!

Definition of a subgroup:

A subset Gi ≃ G is a subgroup of a group, if it also forms a group under the same operation ·.
Subgroup tests:

• closed under operation: ↔A,B ↗ Gi : A ·B ↗ Gi

• existence of inverse element: ↔A ↗ Gi : A→1 ↗ Gi

This implies, that the identity of G is also an element of Gi. However, if the identity is not an

element of Gi we can quickly show, that Gi is not a group.

All sets are subsets of the set of invertible matrices GL(n) = {A ↗ Rn↑n| det(A) ⇐= 0}.

(a) G1 :=
{
A ↗ Rn↑n| det(A) ⇐= 0 ⇒A↓ = A

}

Set of symmetric invertible matrices.
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• ↔A,B ↗ G1, the multiplication AB has to be an element of G1. But in general

(AB)↓ = B↓A↓ = BA ⇐= AB, as the matrix multiplication is not commutative.

(b) G2 := {A ↗ Rn↑n| det(A) = ⇑1}

• det(I) = 1 ⇐= ⇑1 ⇓ I ⇐↗ G2 The set contains no neutral element, thus it is not a

group.

• ↔A,B ↗ G2, the multiplication AB has to be an element of G2. But in general

det(AB) = det(A)det(B) = ⇑1 ·⇑1 = 1 ⇐= ⇑1

(c) G3 := {A ↗ Rn↑n| det(A) > 0}
Recall the definition of subgroup

• I ↗ G3

• ↔A ↗ G3, the inverse A→1
has to be an element of G3.

det(A→1) =
1

det(A)︸ ︷︷ ︸
>0

> 0

• ↔A,B ↗ G3, the multiplication AB has to be an element of G3.

det(AB) = det(A)︸ ︷︷ ︸
>0

det(B)︸ ︷︷ ︸
>0

> 0

Thus, G3 is a subgroup of GL(n) and hence a group.

6. Groups and inclusions:

Groups

(a) SO(n): special orthogonal group

(b) O(n): orthogonal group

(c) GL(n): general linear group

(d) SL(n): special linear group

(e) SE(n): special euclidean group (In particular, SE(3) represents the rigid-body motions

in R3
)

(f) E(n): euclidean group

(g) A(n): affine group

Inclusions

(a) SO(n) ≃ O(n) ≃ GL(n)

(b) SE(n) ≃ E(n) ≃ A(n) ≃ GL(n+ 1)

7. State the definition of a vector space V over a field K(which is eiher C or K). Neglect the

definition of a field here. Does V have to fulfil the group properties? What additional properties

does a vectorspace fulfil?

A set V with operation + is over a field K is a vector space if we have

• (V,+) is a commutative group

• scalar multiplication · : K→ V ↑ V , ω ·A ↓↑ B

– 1v = v (identity elem. of scalar mul.)

– ε(ϑv) = (εϑ)v (compatibility of scalar mul. with field mul.)
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– ε(v+w) = εv+ϑw, (ε+ϑ)v = εv+ϑv (distributivity of scalar mul. wrt. vector

add.)

• field is set K which forms commutative groups (K,+), (K\{0}, ·), and fulfils the distibu-

tive property

8. Let V be a vector space over K. State the definition of

• linear independence of pairwise distinct v1, ...,vk ↗ V∑k
i=1 εivi = 0 ⇓ εi = 0↔εi

• the span of a set M ≃ V

span(M) =
{∑k

i=1 εivi

∣∣∣ vi ↗ M,εi ↗ K
}

• the basis of U ≃ V .

linearly independent set M that spans U . That is, U = span(M) with lin. indep. M.

9. Show (without using concepts like determinant) for each of the following sets (1) whether they

are linearly independent, (2) whether they span
3

and (3) whether they form a basis of
3
:

(a) M1 =









1
1
1



 ,




0
1
1



 ,




0
0
1










• is linearly independent, as
∑

i εivi = 0 ⇓ ε1 = 0 ⇓ ε2 = 0 ⇓ ε3 = 0

• spans
3
, as for any x = [x1,x2,x3]T we have x = x3v3+x2(v2⇑v3)+x1(v1⇑v2)

and thus x ↗ span(M1)

• forms a basis of
3
, as its elements are independent and span

3
.

(b) M2 =









2
1
0



 ,




1
1
0










• is linearly independent, as
∑

i εivi = 0 ⇓ ε1 = 0 ⇓ ε2 = 0

• does not span
3
, as for any x = [x1,x2,x3]T with x3 ⇐= 0 we cannot find a lin.

comb.

• does not form a basis of
3
, as it does not span

3

(c) M3 =









2
1
0



 ,




3
1
0



 ,




0
0
1



 ,




1
0
1










• is linearly dependent, as
∑

i εivi = 0 ⇓ [ε1,ε2,ε3,ε4] = ω[1,⇑1,⇑1, 1] ⇐= 0

• spans
3
, as for any x = [x1,x2,x3]T we have x = x3(v4 ⇑ v3) + x1(v2 ⇑ v1) +

x2(v1 ⇑ 2(v2 ⇑ v1)) and thus x ↗ span(M3)

• does not form a basis of
3
, as vectors are lin. dependent

10. The dimension theorem for vector spaces states: Given a vector space V , any two bases have
the same cardinality. This number defines the dimension of the vector space.
Show by using the previous exercise: In

3
, there cannot be more than three independent

vectors.

We have found a basis of cardinality three in the previous exercise. As there can not be found

a basis with different cardinality, we cannot find 4 lin.indep. vec. that span
3
, as this would

fulfil the definition of a basis. But the theorem only allows a basis with three lin. indep. vectors.
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11. A hilbert space H is a finite dimensional vector space over a field K endowed with an inner

product. State the definition of an inner product.

A function ⇔·, ·↖ : H →H ↑ K

• Symmetry: ⇔u,w↖ = ⇔w,u↖
• Linear in the second argument: ⇔v,εu↖ = ε⇔v,u↖, ⇔v,u+w↖ = ⇔v,u↖+ ⇔v,w↖
• Positive definiteness: if v is not zero, then ⇔v,v↖ > 0

12. State for the following, whether the following Vector spaces form a Hilbert space with the

provided inner product.

• Rn
with ⇔x,y↖ = xTy

– Symm: xTy = x1y1 + ... = y1x1 + ... = yTx

– Lin: xT (εy) = x1εy1 + ... = εx1y1 + ... = (εx)Ty
xT (y + z) = x1(y1 + z1) + ... = x1y1 + x1z1 + ... = xTy + xT z

– Pos. def: xTx = x21 + ... =
∑

i x
2
i ↙ 0, now x ⇐= 0 ⇓ some xi ⇐= 0 and thus∑

i x
2
i > 0

• Rn↑m
with ⇔A,B↖ = tr(ATB)

A = [a1, ...,an], B = [b1, ...,bn]

– Symm: tr(ATB) =
∑

k a
T
k bk =

∑
bT
k ak = tr(BTA) with using the previous

subproblem

– Lin: tr(ATεB) =
∑

k a
T
k εbk =

∑
εbT

k ak = tr(εBTA) with using the previous

subproblem

tr(AT (B+C)) =
∑

k a
T
k (bk+ck) =

∑
aTk bk

∑
aTk ck = tr(εATB)+ tr(εATC)

with using the previous subproblem

– Pos. def.: Let tr(ATA) =
∑

k a
T
k ak = 0. As aTk ak ↙ 0 from above holds in general

we can infer aTk ak = 0↔k and further ak = 0 by using the previous exercise and thus

A = 0

13. Prove or disprove: There exist vectors v1, ...,v5 ↗ 3 \ {0}, which are pairwise orthogonal,

i.e.

↔i, j = 1, ..., 5 : i ⇐= j =⇓ ⇔vi,vj↖ = 0

Hint: From the previous problem you can use: In 3, there are at most three linearly indepen-
dent vectors. Assume there exist five pairwise orthogonal, non-zero vectors v1, ...,v5 ↗ 3

. In

3
, there are at most three linearly independent vectors. Thus, the vectors are linearly depen-

dent, which means

↘ ai :
5

i=1

aivi = 0 ,

with at least one ai ⇐= 0. Without loss of generality, assume that a1 = ⇑1, resulting in

v1 = a2v2 + a3v3 + a4v4 + a5v5

As the vectors are assumed to be pairwise orthogonal, we can derive

⇔v1,v1↖ = ⇔v1, a2v2 + a3v3 + a4v4 + a5v5↖ =
= a2⇔v1,v2↖+ a3⇔v1,v3↖+ a4⇔v1,v4↖+ a5⇔v1,v5↖ =
= 0 + 0 + 0 + 0 = 0

⇓ v1 = 0 ,

which contradicts the assumption of pairwise orthogonal, non-zero vectors.
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14. Show that the frobenius norm ∝A∝F =
∑n

i=1

∑m
j=1 a

2
ij for A ↗ n↑m

is an induced norm

of the inner product ⇔A,B↖ = tr(A↓B).

tr(A↓A) =
∑

i a
T
i ai =

∑
i

∑
j a

2
ij

⇓ ∝A∝F =
∑

i

∑
j a

2
ij =


⇔A,A↖
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