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1. (a) E is essential matrix → ! = diag{ω,ω, 0}:
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(b) Since U, V are orthogonal with determinant 1 (see lecture), they are rotation matrices.
Since SO(3) is a group and thus closed under multiplication, R ↔ SO(3).
Alternative longer proof:

i. U, V are orthogonal matrices → U
→
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→
=
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→
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ii. U and V are special orthogonal matrices with det(U) = det(V →
) = 1 (Slide 9,

Chapter 5).

det(R) = det(UR
→
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→
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2. (a) H = R+ Tu
→ ↗ R = H ↓ Tu

→.

E = T̂R

= T̂ (H ↓ Tu
→
)

= T̂H ↓ T̂ T︸︷︷︸
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u
→
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(b)

H
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→
H = H
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→
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= H
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→
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→
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= H
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→
T̂H (because T̂ is skew-symmetric, i.e. T̂→

= ↓T̂ )
= 0

3. The notations below are as in Slide 6, Chapter 5. Note that the following slides deal with
projected points in the normalized plane (Z = 1), whereas here we assume pixel coordinates.
The case of normalized coordinates is then just a special case with K = .

Rotation R and translation T are defined such that

g21 =

[
R T

0 1

]

transforms a point from coordinate system 1 (CS1) to coordinate system 2 (CS2). This means
that the inverse transformation (converting points from CS2 to CS1) is given by

g12 = g
↓1
21 =

[
R

→ ↓R
→
T

0 1

]
.

o1 seen in CS1:
[
0 0 0 1

]→ (homogeneous coordinates)

o1 seen in CS2: g21
[
0 0 0 1

]→
=

[
T

1

]

e2 are the pixel coordinates of o1 projected into image 2:

ϑ2e2 = K2”0

[
T

1

]
= K2T

o2 seen in CS2:
[
0 0 0 1

]→

o2 seen in CS1: g12
[
0 0 0 1

]→
=

[
↓R

→
T

1

]

e1 are the pixel coordinates of o2 projected into image 1:

ϑ1e1 = K1”0

[
↓R

→
T

1

]
= ↓K1R

→
T
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e
→
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