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2. (a) l is in the coimage of L, and therefore l is a normal vector to the plane that is determined
by the camera position and L.

↓ l
T
x1 = 0

l
T
x2 = 0.

↓ l ⫅̸ x1 ↔ x2 = x̂1x2.

l1 and l2 are normal vectors to the planes through camera position and L1, L2 respectively.

↓ l
T
1 x = 0
l
T
2 x = 0

↓ x ⫅̸ l1 ↔ l2 = l̂1l2.

(b) i. l1 ⫅̸ x̂u :
x is in the preimage of L1. ↓ l

↑
1 x = 0.

→ point u ↗= p in L1. ↓ l
↑
1 u = 0

↓ l1 ⫅̸ x̂u.
ii. l2 ⫅̸ x̂v : analog to i.

iii. x1 ⫅̸ l̂r :
x1 is in the preimage of L. ↓ x

↑
1 l = 0

→ a line L
→ through p1 with coimage r ↗= l. ↓ x

↑
1 r = 0.

↓ x1 ⫅̸ l̂r.
iv. x2 ⫅̸ l̂s : analog to iii.
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3. rank
(

x̂1!1

x̂2!2

)
↭ 3

↓ →X ↑ 4\{0} with
(

x̂1!1

x̂2!2

)
X = 0.

↓ x̂1!1X = 0 ↘ x̂2!2X = 0,

↓ x1 ↔!1X = 0 ↘ x2 ↔!2X = 0.

↓ x1 and !1X are linearly dependent; and x2 and !2X are linearly dependent.

↓ →ω1,ω2 ↑ with !1X = ω1x1 ↘ !2X = ω2x2

↓ x1 and x2 are projections of X.

2


