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1. Rigid body motion requires to preserve 1) the norm and 2) the cross product. We first show the
norm preservation, given a vector v € R? and a rotation matrix R € R3*3:

[|Rv||?> = (Rv)"Rv=v " RTRv =v"v = [jv|?

Next, we show the cross product preservation. Given two vectors a and b and assume we only
rotate around x-axis with angle 6. Therefore, the rotation matrix is:

1 0 0
Ry(0)= [0 cos(f) —sin(0)
0 sin(f) cos(f)

Rotating the cross product of a and b with R, (), we have:

ay b1 azbs — azbs
axb=|az ]| x [ba] = |ash —arbs

as bs a1by — agby

1 0 0 agbs — azby

= Ry(0)(axb)= 10 cos(d) —sin(0) asby —aibs
0 sin(g) cos(f) a1by — ashy
asbs — azbs
= 005(9) (agbl — albg) — sin(@)(albz — azbl)
sin(é) (a3b1 — (1,163) + COS(&)(albz — azbl)

Now, we first rotate @ and b with R, () and then calculate the cross product:

1 0 0 ay 1 0 0 by
(Rz(0)a) x (Ry(0)b) = | 0 cos(d) —sin(6) az | x |0 cos(9) —sin(0) bo
0 sin(f) cos(f) az 0 sin(d) cos(f) b3
ai by
= | cos(f)az — sin(f)ag | x | cos(8)by — sin(6)bs
sin(f)as + cos(f)as sin(0)be + cos(0)bs

Following the caculation of the cross product, we can see that the two results are the same.
Therefore, the cross product is preserved under rotation around the x-axis. The same can be
shown for the y and z axis. The corresponding rotation matrices are:

cos(f) 0 sin(f) cos() —sin(d) 0
Ry(9) = 0 1 0 R.(6) = | sin(d) cos(f) 0O
—sin(d) 0 cos(9) 0 0 1



2 a = Qava)Ton _ v ATw, _ vl dv, _ wf Qo) _ )
R T N A R ) (Va,vp) b

3. We assume u # —v. Otherwise, we only get w = 0. We first compute the inner product
between u and v:

(u, v) = ||lul[||v]| cos(f) =1-1-cos() = cos(0)
Next, we compute the inner product between w and u:
(w,u) = (u+v,u) = (u,u) + (v,u) =1+ cos(f)
Alternatively, we can compute the inner product between w and u as follows:
(w,u) = el [[ul| cos(a) = [|u + v]] cos(e)

Now, we compute ||u + v||:

lu+v| = Viu+v,u+v) = V{uu) + 2{u,v) + (v,0) = /1 +2cos(8) + 1 = /2(1 + cos(0))
Finally, we compute cos():

[lu+ v|| cos(ar) = 1+ cos(f)
= /2(1 + cos()) cos(a) = 1 + cos(8)
1+ cos(f)

= cos(a) = m.

Because cos?(6/2) = H%’sw) we have shown cos(a) = cos(6/2).

4. Let V be the orthonormal matrix (i.e. VT = V1) given by the eigenvectors, and X the diagonal
matrix containing the eigenvalues:

| | Moo
V=|v - v, and X =1 o

0 An
As V is a basis, we can express x as a linear combination of the eigenvectors x = V «, for some
a€R" For||z|| =1wehave }_,a? =a'a =2"VV 'z = 2"z = 1. This gives
Az =2"VEV
=a"VTVEV Va
=a'Sa= Za?)\i
K

Considering Y°, a7 = 1, we can conclude that this expression is minimized iff only the
corresponding to the smallest eigenvalue(s) are non-zero. If A,,_; > ), there exist only two
solutions (o, = =£1), otherwise infinitely many.

For maximisation, only the the «; corresponding to the largest eigenvalue(s) can be non-zero.



5. We show that: z € kernel(A) < = € kernel(AT A).

7=": Let 2 € kernel(A)
AT Az, =AT0=0 = 2 € kernel(AT A)
=0
7<= Letz € kernel(AT A)
0=2a' AT Az = (Az, Az) = ||Az|]®* = Az =0 = =z € kernel(A)
=0

6. Singular Value Decomposition (SVD)
Note: There exist multiple slightly different definitions of the SVD. Depending on the conven-
tion used, we might have S € R™*", S € R"™ ™, or S € RP*P where p = rank(A). In the
lecture the last option was presented. In the following, we present the results for the first option,
since that is the one that numpy . 1inalg. svd function returns by default.

(a) Ac ]Rmxn, U e ]Rmxm, S e Rmxn’ V € RXn
(b) Similarities and differences between SVD and EVD:
i. Both are matrix diagonalization techniques.

ii. The SVD can be applied to matrices A € R™*™ with m # n, whereas the EVD is
only applicable to quadratic matrices (4 € R™*" with m = n).

(c) Relationship between U, S,V and the eigenvalues and eigenvectors of AT A and AAT:
i. AT A: The columns of V' are eigenvectors; the squares of the diagonal elements of S
are eigenvalues.

ii. AAT: The columns of U are eigenvectors; the squares of the diagonal elements of .S
are eigenvalues (possibly filled up with zeros).

(d) Entries in S:
i. S is a diagonal matrix. The elements along the diagonal are the singular values of A.
ii. The number of non-zero singular values gives us the rank of the matrix A.



