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1. Rigid body motion requires to preserve 1) the norm and 2) the cross product. We first show the

norm preservation, given a vector v → R3
and a rotation matrix R → R3→3

:

||Rv||2 = (Rv)↑Rv = v↑R↑Rv = v↑v = ||v||2

Next, we show the cross product preservation. Given two vectors a and b and assume we only

rotate around x-axis with angle ω. Therefore, the rotation matrix is:

Rx(ω) =




1 0 0
0 cos(ω) ↑ sin(ω)
0 sin(ω) cos(ω)





Rotating the cross product of a and b with Rx(ω), we have:

a↓ b =




a1
a2
a3



↓




b1
b2
b3



 =




a2b3 ↑ a3b2
a3b1 ↑ a1b3
a1b2 ↑ a2b1





↔ Rx(ω)(a↓ b) =




1 0 0
0 cos(ω) ↑ sin(ω)
0 sin(ω) cos(ω)








a2b3 ↑ a3b2
a3b1 ↑ a1b3
a1b2 ↑ a2b1





=




a2b3 ↑ a3b2

cos(ω)(a3b1 ↑ a1b3)↑ sin(ω)(a1b2 ↑ a2b1)
sin(ω)(a3b1 ↑ a1b3) + cos(ω)(a1b2 ↑ a2b1)





Now, we first rotate a and b with Rx(ω) and then calculate the cross product:

(Rx(ω)a)↓ (Rx(ω)b) =




1 0 0
0 cos(ω) ↑ sin(ω)
0 sin(ω) cos(ω)








a1
a2
a3



↓




1 0 0
0 cos(ω) ↑ sin(ω)
0 sin(ω) cos(ω)








b1
b2
b3





=




a1

cos(ω)a2 ↑ sin(ω)a3
sin(ω)a2 + cos(ω)a3



↓




b1

cos(ω)b2 ↑ sin(ω)b3
sin(ω)b2 + cos(ω)b3





Following the caculation of the cross product, we can see that the two results are the same.

Therefore, the cross product is preserved under rotation around the x-axis. The same can be

shown for the y and z axis. The corresponding rotation matrices are:

Ry(ω) =




cos(ω) 0 sin(ω)

0 1 0
↑ sin(ω) 0 cos(ω)



 Rz(ω) =




cos(ω) ↑ sin(ω) 0
sin(ω) cos(ω) 0

0 0 1




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2. εa = (ωava)→vb
↓va,vb↔ = v→a A→vb

↓va,vb↔ = v→a Avb
↓va,vb↔ =

v→a (ωbvb)
↓va,vb↔ = εb

3. We assume u ↗= ↑v. Otherwise, we only get w = 0. We first compute the inner product

between u and v:

↘u, v≃ = ⇐u⇐⇐v⇐ cos(ω) = 1 · 1 · cos(ω) = cos(ω)

Next, we compute the inner product between w and u:

↘w, u≃ = ↘u+ v, u≃ = ↘u, u≃+ ↘v, u≃ = 1 + cos(ω)

Alternatively, we can compute the inner product between w and u as follows:

↘w, u≃ = ⇐w⇐⇐u⇐ cos(ϑ) = ⇐u+ v⇐ cos(ϑ)

Now, we compute ⇐u+ v⇐:

⇐u+ v⇐ =
√

↘u+ v, u+ v≃ =
√

↘u, u≃+ 2↘u, v≃+ ↘v, v≃ =
√

1 + 2 cos(ω) + 1 =
√

2(1 + cos(ω))

Finally, we compute cos(ϑ):

⇐u+ v⇐ cos(ϑ) = 1 + cos(ω)

↔
√

2(1 + cos(ω)) cos(ϑ) = 1 + cos(ω)

↔ cos(ϑ) =
1 + cos(ω)√
2(1 + cos(ω))

.

Because cos2(ω/2) = 1+cos(ε)
2 , we have shown cos(ϑ) = cos(ω/2).

4. Let V be the orthonormal matrix (i.e. V ↑ = V ↗1
) given by the eigenvectors, and ! the diagonal

matrix containing the eigenvalues:

V =




| |
v1 · · · vn
| |



 and ! =





ε1 0
. . .

0
. . . 0

. . . 0 εn



 .

As V is a basis, we can express x as a linear combination of the eigenvectors x = V ϑ, for some

ϑ → n
. For ||x|| = 1 we have

∑
i ϑ

2
i = ϑ↑ϑ = x↑V V ↑x = x↑x = 1. This gives

x↑Ax = x↑V !V ↗1x

= ϑ↑V ↑V !V ↑V ϑ

= ϑ↑!ϑ =
∑

i

ϑ2
iεi

Considering
∑

i ϑ
2
i = 1, we can conclude that this expression is minimized iff only the ϑi

corresponding to the smallest eigenvalue(s) are non-zero. If εn↗1 ⊋ εn, there exist only two

solutions (ϑn = ±1), otherwise infinitely many.

For maximisation, only the the ϑi corresponding to the largest eigenvalue(s) can be non-zero.
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5. We show that: x → kernel(A) ⇒ x → kernel(A↑A).

”↔”: Let x → kernel(A)
A↑ Ax︸︷︷︸

=0

= A↑0 = 0 ↔ x → kernel(A↑A)

”⇑”: Let x → kernel(A↑A)
0 = x↑A↑Ax︸ ︷︷ ︸

=0

= ↘Ax,Ax≃ = ||Ax||2 ↔ Ax = 0 ↔ x → kernel(A)

6. Singular Value Decomposition (SVD)

Note: There exist multiple slightly different definitions of the SVD. Depending on the conven-

tion used, we might have S → Rm→n
, S → Rn→n

, or S → Rp→p
where p = rank(A). In the

lecture the last option was presented. In the following, we present the results for the first option,

since that is the one that numpy.linalg.svd function returns by default.

(a) A → Rm→n
, U → Rm→m

, S → Rm→n
, V → Rn→n

(b) Similarities and differences between SVD and EVD:

i. Both are matrix diagonalization techniques.

ii. The SVD can be applied to matrices A → Rm→n
with m ↗= n, whereas the EVD is

only applicable to quadratic matrices (A → Rm→n
with m = n).

(c) Relationship between U, S, V and the eigenvalues and eigenvectors of A↑A and AA↑
:

i. A↑A: The columns of V are eigenvectors; the squares of the diagonal elements of S
are eigenvalues.

ii. AA↑
: The columns of U are eigenvectors; the squares of the diagonal elements of S

are eigenvalues (possibly filled up with zeros).

(d) Entries in S:

i. S is a diagonal matrix. The elements along the diagonal are the singular values of A.

ii. The number of non-zero singular values gives us the rank of the matrix A.
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