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Exercise: May 21s, 2025
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where 71, 79, 3 are the row vectors of R: R= | —ry —
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2. Let M := (]Wl — ]\[2) =: | mo1 Mmao2 Mma3

m31 Mm32 M33

nym,
We show that M is skew-symmetric by distinguishing diagonal and off-diagonal elements of
M:

(a) Vi: 0= eiTMe,; = my; where e; = i-th unit vector
(b) Vi#j:0=(e;+¢;)  M(e; +ej) where e; = j-th unit vector
= M4; + Mj; +mij +Mji = Mi; = —Myi

hence, m;; = 0 and m;; = —m;;, i.e. M is skew-symmetric.
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using M = —M T, we directly calculate

Voo Mo = (" Ma)" ="M e = —(a" Mz)

=2 ' Mz=0

Alternative for ”<":
Ve:ax"'Mz=a" (M xz)=0

Because M is skew-symmetric, Mz can be interpreted as a cross product. The result of any
cross product with x is orthogonal to .
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Alternative solution for ¢*:
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(b) The formulas for n even and odd can be found by writing down the solutions for n =
1,...,6:

w
~2
W = -0
ot = —@? as
@ = 0 as =w
ot = @? as:
For even numbers: ?
ot o= o2
of = o2
For odd numbers: @
o= =0
@ = a
even: & = (1)1 @? forn>1
odd: @t = (-1)"w forn >0

Proof via complete induction:
i. For even numbers 2n where n > 1:
-n=1: &%= (-1)>2?
- Inductionstepn —n+1:
w2(n+1) — .2
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ii. For odd numbers 2n + 1 where n > 0:
-n=0: &'=(-1)%
- Inductionstepn —n+1:
L2 ol a2

-H"-w-w (assumption)

(¢) We know: w € R3. Let v = &7 and ¢ = ||w|. Hence, w = vt, & = it.
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