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Plan for Today 

1.  Formalities 

2.  Examples of Combinatorial Optimization Problems 
in Computer Vision 

3.  Outline of the Lecture 
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Dates 

•  Lecture 
–  Tuesday 14.15 – 15.45, room 02.09.023 
–  Course  

•  Tutorial 
–  approx. every other week 
–  time tbd. 
–  precise dates will be announced on the course web 

page 
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Lecture 1 

19 
Lecture 2 

20 21 22 

23 24 25 
no lecture 

26 
no tutorial 

27 28 29 

30 31 
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Sunday Monday Tuesday Wednesday Thursday Friday Saturday 

 
 

1 
All Saints 

2 
no tutorial 

3 4 5 

6 7 8 
Lecture 3 

9 
no tutorial 

10 11 12 

13 14 15 
Student 
assembly 

16 
Lecture 4 

17 18 19 

20 21 22 
Lecture 5 

23 
Tutorial 

24 25 26 

27 28 29 
Lecture 6 

30 
Tutorial 

November 2011 



•  Requirements for being admitted to the exam 
–  regular participation in lecture and tutorial 
–  signs of activity in the tutorials 

•  Exam 
–  oral or written exam 
–  more information in the course of the semester 

Graduation 
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Slides 

•  slides are available on the course page 
–  user name: tum 
–  password: combinatorics 

•  let me know any typos, mistakes etc. 

Combinatorial Optimization in Computer Vision - Introduction 7 



Course Page 

•  For further information (slides, tutorial dates, exam 
dates etc.) see
http://cvpr.in.tum.de/teaching/ws2011/cocv2011 

•  Don‘t hesitate to contact me 
ulrich.schlickewei@in.tum.de 
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Plan for Today 

1.  Formalities 

2.  Examples of Combinatorial Optimization Problems 
in Computer Vision 

3.  Outline of the Lecture 
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Examples 

a)  Image Segmentation 
b)  Shape Matching 
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Image Segmentation 
Decompose an image into foreground (lion) and background 
(forest)  
image courtesy of C. Nieuwenhuis 
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Segmentation Approach: Markov Random 
Fields 

1.  Probability distribution on the set of all possible 
segmentations, based on 

–  foreground-background probability distribution 
–  prior-knowledge on objects‘ boundary 

2.  Optimization problem 
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Reminder: Random Variables I 

•  A Random Variable is a function 

which assigns unique numerical values to all 
possible outcomes of a random experiment under 
fixed conditions. 
(Mathematically, X is a measurable map from a 
probability space S to a measurable space ¤.) 

•  Example: throw the dice twice. 
S = {(1,1),(1,2),...,(6,6)}, ¤ = {2,...,12} 
X = sum of the two results  
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Reminder: Random Variables II 

•  A random variable X : S → ¤ induces a probability 
distribution PX on ¤ by setting 

where A ½ ¤ and PS is the probability distribution on 
S. 

•  Example: throw a dice twice. 
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S = {(1,1), (1,2), (1,3), ..., (2,1), (2,2), ..., (3,1), ..., (6,6)}  

A = {3,4} 



Reminder: Random Variables III 

•  Typically one is interested only in the distribution of a random 
variable and not its domain S nor in the actual map X. 

•  In our setup we assume that we took a photo of a real scene 
and we want to distinguish between the foreground and the 
background of the scene. In this setup we have 
–  the space S of all possible scenes which could have led to 

the image measured. 
–  a random variable Xi,j for each pixel (i,j), 1 ≤ i ≤ n, 1 ≤ j ≤ m, 

with 

–  the space ¤ = {0,1} of possible pixel labels 
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Modelling a Distribution for Image 
Segmentation 

•  In the following we will present a model for the 
distribution of the random field Xij : S → ¤. 

•  For this, we need the notion of Markov Random 
Fields (MRFs). 

•  Recall that two random variables X1,X2 are 
independent (write X1 t X2) if the joint probability 
distribution decomposes in a product 

 
(intuitively, this means that X_1 and X_2 do not influence 
each other) 
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Markov Random Fields I 

Definition: Let G = (V,E) be a graph. A Markov random 
field (MRF) indexed over G is a family of random variables 
X = (Xv : S → ¤)v 2 V such that the following condition is 
fulfilled: 
 
(Local Markov Property) A variable Xv is conditionally 
independent of all other variables if its neighborhood is 
given: 
 
 
Here, n(v) is the set of vertices which are connected to v by 
an edge and cl(v) = n(v) [ {v} is the closed neighborhood of 
v. 
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Markov Random Fields II 
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v 

n(v) 

V \ cl(v) 
Consider a 
•  vertex v 
•  its neighborhood n(v) 
•  complementary vertices 

V \ cl(v). 

The Markov property of a 
random field X = (Xv) has  
the following meaning: 

Assume that Xn(v) is fixed. 
 
Then the value of Xv only 
depends on Xn(v) and it is 
independent of XV \ cl(v). 



Cliques 

Definition: Let G = (V,E) be a graph (V = set of 
vertices, E = set of edges). A clique is a subset C ½ V 
such that for all vertices v,w 2 C are connected by an 
edge (v,w) 2 E. 
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In the example on the left, there 
are three types of cliques: 



Factorization over Cliques 

Theorem (Hammersley-Clifford):  
Let X = (Xv : S → ¤)v 2 V be a random field over a graph G = 
(V,E). Assume that each possible value x 2 ¤|V| has positive 
probability. 
Then the following are equivalent: 
•  X is a Markov random field. 
•  For each each possible value x 2 ¤|V| we have the 

following factorization property 

 
(Here, p is the probability distribution on ¤ induced by X and xC is the projection 
of x onto ¤|C|.) 
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Gibbs Potential 

•  Under the hypothesis that every possible value x has 
positive probability there exists a function  
E : ¤|V| → R with 

Here, Z = ∑x exp(-E(x)) so that all probabilies sum up to 1. 
•  If now X has in addition the Markov property, then E can 

be written as  

•  Such a potential is called a Gibbs potential. 
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MAP Inference for MRFs 

Problem: Want to find the result x* 2 ¤|V| with the 
highest probability. 

Combinatorial Optimization in Computer Vision - Introduction 22 

space of possible results ¤|V| 

probability 

x* 



Minimizing the negative log-likelihood 

Mathematically, the problem of finding the most 
probable x results in the following optimization problem 
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Clique Factorization in Image Segmentation 

•  In the following: study an MRF model for image 
segmentation 

•  4-neighborhood leads to Gibbs potential with 
factorization over the three types of cliques 
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In the example on the left, there 
are three types of cliques: 



MRF Model for Image Segmentation 

•  Markov random field X  = (Xij) with 

•  Next step: Determine potentials        for singleton cliques 
and            for pairwise cliques such that 
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Unary Cliques Potential 

•  Estimate probability distributions p,q : Ω → [0,1]:  
p(i,j) = probability of prixel (i,j) belonging to the 

foreground  
q(i,j) = probability of pixel (i,j) belonging to the 

background. 
•  Such a distribution could be estimated for example 

on the base of user scribbles. 
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User Scribbles for Color Distribution 
Based on user scribbles, a foreground-background probability 
distribution is estimated. 
image courtesy of C. Nieuwenhuis 
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Data Term 

•  Once p and q are determined, choose             
proportional to –log(p(i,j)), -log(q(i,j)). 

•  Next, set  

•  The unary potential is often referred to as data term 
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Pairwise Clique Potential: Boundary Prior 

It is likely that the intensity values change at the 
object‘s boundary. Set 
 
 
Then the pairwise potential  
 
 
favours such object boundaries. Here, 
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Optimization Problem for Segmentation 

MAP inference for computing the most probable 
segmentation will then be an optimization problem 
 
 
 
where 
 
 
 
Next lecture: Polynomial time solution via graph cuts! 
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3D Shape Matching 
The goal in 3D shape matching is to find meaningful 
correspondences of two 3D shapes (represented as triangle 
meshes) 
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Triangle Correspondences 

•  We search for optimal correspondences of triangles 

•  Optimization over indicator vector z 2 {0,1}N 

•  linear cost vector c 
•  linear constraints granting that matchings are 

bijective and that neighboring triangles are matched 
to neighboring triangles 
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Integer Linear Program 

Alltogether, this approach allows to formulate 3D 
shape matching as an integer linear program 
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Outline of the Lecture 

•  Combinatorial Optimization problems are roughly 
optimization problems over finite sets. 

•  We will see several instances of such problems 
arising in Computer Vision. 

•  The main focus lies on 
–  identifying polynomial-time solvable problems (totally 

unimodular matrices) 
–  learning efficient algorithms for solving the latter 

(graph cuts, linear programming) 
–  learning efficient algorithms for approximately solving 

NP-hard vision problems (QPBO, dual decomposition) 
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Summary 

•  We have seen three examples of Combinatorial 
Optimization problems in ComputerVision: binary 
segmentation, feature matching, shape matching 

•  We have derived how maximum-a-posteriori (MAP) 
inference in Markov random fields (MRF) leads to a 
combinatorial minimization problem. 
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