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Pseudo-Boolean Functions
Definition: Let vV ={1,...,n} be a finite set.

a) Asetfunction on V is a real-valued function
f:PV)—=>R

defined on the power set of V.

b) A pseudo-Boolean function on V is a real-valued function

£:{0,1}" > R.
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Set Function = Pseudo-Boolean Function

Since subsets S C V' can be represented by their indicator
vectors 15 € {0,1}" with ((1s);=1) < (i€ S5), thereis a
natural bijection between pseudo-Boolean functions and set
functions. We will switch between the two notions with no
further comment.

There are (at least) three ways of representing pseudo-
Boolean functions:

» table
« multilinear polynomial
e posiform.



Representation by Table

Let V ={1,2,3}. The most unefficient way of representing a
pseudo-Boolean function on Vv is by specifying its value on all
possible subsets:

S f(S)
0 5
{1} -1
{2} 2
{3} -3
(1,2} 1
(1,3} 15
{2,3} -7
(1,2,3} 2




Representation by Multilinear Polynomial

Prop.: Every pseudo-Boolean function
f:{0,1}" = R.
has a unique representation as a multilinear polynomial

flxy,...,xpn) = Z CSij.

SCV JES

(A multivariate polynomial is multilinear if in each monomial

Ciy..iqa%iy -+ - Tiy, €ach variable x; appears at most in degree
one. This is equivalent to say that if all variables but z; are
fixed, then the polynomial is linear in z;.)

Combinatorial Optimization in Computer Vision - Summary of the First Part



Degree and Size

Let f:{0,1}" — R be a pseudo-Boolean function represented
by a multilinear polynomial

flxy,...,x ZCSH$]

SCcV jes

 The degree of f is defined as the degree of its multilinear
polynomial representation.

* The size of f is defined as

size(f) = > |S].

SeV:.cs#0



Representation by a Posiform |

Let L=1{1,..., n,1,...,m}. (Sometimes, this is called the set of
literals.)

For a vector = = (z1,...,z,) € {0,1}!V] we define the
corresponding literal u(zx) € {0,1}/* by

Ty iflE{l,...,n}
T =1-—x ifle{l,...,n}.

(u(z)) = {



Representation by a Posiform |l

Then any pseudo-Boolean function f:{0,1}" — R can be
represented by a posiform

o(x) = Z art H u(x);,
TCL IeT

where ar >0 whenever T (.

In contrast to the multilinear polynomial representation, the
posiform representation is not unique. For example
2172 = (1 — 77)(1 — 22)
=1—-7o71 — 22 +T122
=1—(1—21) — (1 —73) + T122

=—14+x1+75 + T122.



Example

Binary image segmentation:
e V =set of pixels
« z; = |labelling of pixel : .

Define
P(x) = Z C;T; + G + Z Cii (T:Z; + Tixy).
i€V i~j

Then binary image segmentation can be formulated as
minimizing the quadratic posiform ¢ .

We will see later, that quadratic pseudo-Boolean optimization
Is intimately related to graph cuts.



From Tables to Posiforms |

Consider the pseudo-Boolean function defined by the table.

S f(S) term
0 5 T1T2T3
{1} -1 | 217o73
{3} -3 | T1T2x3
{1, 2} 1 $1£L'2£13_3
{1, 3} 15 | x172x3
{2,3} -7 | Tizoxs
{1, 2, 3} 2 L1X2T3

This is represented by
DT1ToxT3 — T1T2X3 + 2T1x2T3 — 3T1XT2T3

-+ 331332:6_3 + 15$1$_25E’3 — 7$_1$25133 + 25[31%25[33.
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From Tables to Posiforms |

The expression
5£131£132$3 — T1X2T3 + 233_133237_3 — 3331332333
+ 33133233_3 + 1533133_25133 — 7513_151325133 + 25[313325[33.
IS not a posiform because of negative coefficients in degree

terms. However, it can be transformed to a posiform using
expressions like

— X123 — —(1 — 217—1)51322173

= L1L2L3 — T2X3
= X1IX2X3 — (1 — 332)1'_3
= T1T2X3 + 23 — T3

= T1X9x3 + xox3 + x3 — 1.



From Posiforms to Multilinear Polynomials

In order to pass from a posiform representation to a
multilinear polynomial, replace each occurence of ; by

1 —z; and multiply out.
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Pseudo-Boolean Optimization

Consider a pseudo-Boolean function f:{0,1}" — R and the
optimization problem

i, f(x).

It is easy to see that this problem is NP-hard in general. For
example, the Boolean satisfiability problem SAT can be
formulated as a posiform minimization problem.

An even easier way to the the NP-hardness is by noting, that
In general, each evaluation of f can have exponential cost in

n .



General Results

We now start our analysis of pseudo-Boolean optimization
with three general results:

 We derive a lower bound on minimization problems
induced by the posiform representation.

« We formulate an equivalent continuous optimization
problem.

* \We note that every pseudo-Boolean optimization problem
can be reduced to a quadratic one.



Lower Bound

Assume that the pseudo-Boolean function f is represented

by a posiform
o(x) = Z ar H u(x);,

TCL leT

with ar >0 for T #£0 . Let C(¢) = ayp be the constant coeff.

Proposition:

< mi .
a) We have ap < L nin, f(x)

b) There exists a representation of f by a posiform ¢* with
C(¢*) = min f(z).

x€{0,1}n



Equivalent Continuous Optimization
Problem

Prop.: Assume that f is represented by a multilinear

polynomial
flxy,...,x ZCSH$]

SCcV jes
Let » € [0,1]". Then there exist =,y € {0,1}" such that

flz) < fr) < f(y).

Furthermore, such vectors can be generated in O(size(f)).



Derivatives of Pseudo-Boolean Functions

For the proof of the Proposition we need some further
notation.

Def.: The i-th derivative of f is defined as

of
8%

(z) := f(xq,..., \1// eroyTn) — fx1,.. ., \O/ yeeny L)

i-th position i-th position



Pseudo-Boolean Optimization € Continuous
Optimization

An immediate corollary of the previous proposition is

Corollary: For any pseudo-Boolean function f
min  f(x) = min f(x).

x€{0,1}" rel0,1]m”



Reduction to Quadratic Pseudo-Boolean
Optimization

Theorem (Rosenberg): For every pseudo-Boolean function

f:{0,1}" - R there exists a quadratic (i.e. degree 2)
pseudo-Boolean function ¢: {0,1}™ — R such that

wetody T 7 o 1)

Furthermore, ¢ can be constructed in polynomial time and the
optimal = can be read off the optimal v .



Summary

Pseudo-Boolean functions are functions defined on subsets of
finite sets.

They admit (at least) three different representations:
— table

— multilinear polynomial

— posiform

Pseudo-Boolean optimization is NP-hard in general.

A lower bound can be determined using the posiform
representation.

There exists an equivalent continuous optimization problem.

Pseudo-Boolean optimization can be reduced to quadratic
pseudo-Boolean optimization.



