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Plan

In this lecture we will study the notion of submodularity in the
important special case of quadratic pseudo-Boolean
functions.

In particular, we will see

« an easy criterion for checking whether a given quadratic
pseudo-Boolean function is submodular

» that submodular quadratic pseudo-Boolean functions can
be minimized in polynomial time by computing a minimal
cut uin an approriate graph.



Quadratic Pseudo-Boolean Functions

Definition: Let V ={1,...,n} and let f:{0,1}¥ = R" be a
pseudo-Boolean function. Then f is quadratic if the
corresponding multilinear polynomial has degree two, that is

f(x1,...,x —co—l—ZchZ—l— Z Cij TiT .

1<i<j<n

Remarks:

« A quadratic pseudo-Boolean can also be represented by a
posiform of degree two.



Remarks

« There are posiforms of degree larger than two which
represent quadratic pseudo-Boolean functions. For
example, the function

f(z1,...,2n) =1 —21 — 29 — T3+ 2122 + T2x3 + T123
can be represented by the cubic posiform

¢(r1,x2,23) = T122T3 + T1T223.

 We have seen in Chapter 10 that any pseudo-Boolean
optimization problem can be reduced to a quadratic
pseudo-Boolean optimization problem.



Submodularity

* |In the last chapter, we introduced the concept of
submodular functions.

 We have seen tht submodular pseudo-Boolean
optimization can be reduced to continuous convex
optimization by means of the Lovasz extension.

« Moreover, by the theorem of Grotschel, Lovasz and
Schrijver, submodular optimization problems can be solved
In polynomial time.



Characterization of Submodular Quadratic
Pseudo-Boolean Functions

Prop.: Let f:{0,1}V — R" be a quadratic pseudo-Boolean
function. Then the following are equivalent.

a) f is submodular.
b) In the multilinear polynomial representation of f
f(x1,...,xn) = co+ Zczacz + Z Cij Tik;.
1<1<9<n

the quadratic cofficients are non-positive, that is ¢;; < 0.

c) There exists a partition vV = W, uW; and a posiform
representation of f

¢(T1,.--,%n) = ao + Z a;T; + Z a;T; + Z a;jT;T ;.

€Wy 1eWy 1<i<j<n



Graph Representation of Submodular
Quadratic Pseudo-Boolean Functions |
Let 7:{0,1}V — R" be a submodular quadratic function.

Consider a partition V =W, UW; and a posiform
representation

¢(z1,...,Tn) = ao + Z a;T; + Z a;T; + Z Qi ;T

1eWp 1eWy 1<i<j<n

We define a network N = (W, E, s,t,c) with

W = VU{So,tl}.
° S:S(),tztl

an edge e;:, connecting each vertex i € Wy, clesy,i) = a;

an edge es,,; connecting so with each vertex i € Wy, c(es, i) =



Graph Representation of Submodular
Quadratic Pseudo-Boolean Functions Il

* an edge ¢j; connecting vertex ; with vertex ¢ if j>1
and if a;; >0, capacity c(ej;) = ai;

Example: Consider the posiform
¢($1, L2, $3) — 2$_1 + 437_3 + 3332 + lex_Q + 75132$_3
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Minimization by Graph Cuts

Prop.. Let C =SUT be a cutin the network N = (W, E,s,t,c).
Let zc € {0,1}" be defined as

. 0 ifies
i 1
N1 ifierT

Then the cost of C coincides with f(z¢) up to the constant
term ao of the posiform ¢, thatis |C|+ao = f(zc).

Since all weights are positive, we can compute a min-cut in

the network in polynomial time. This gives a proof of the
Grotschel-Lovasz-Schrijver theorem in the quadratic case.



Summary

« Submodular quadratic pseudo-Boolean problems are
characterized by a multilinear polynomial representation
with non-positive quadratic terms.

« Submodular quadratic pseudo-Boolean functions can be
minimized by computing a min-cut in a network with non-
negative edge weights.

* The quadratic pseudo-Boolean MRF-inference problems
we have seen before (binary segmentation, computing the
optimal alpha-expansion) are examples of submodular
guadratic pseudo-Boolean optimization problems.



