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Minimization of General Quadratic Pseudo-
Boolean Functions

* In the last chapter, we have seen, that submodular
quadratic pseudo-Boolean functions can be minimized
globally in polynomial time by computing a min-cut in an
appropriate network.

 |n this chapter, we will tackle the problem of minimizing
general quadratic pseudo-Boolean functions approximately.
We will see an algorithm, in the vision community known as
QPBO, which

— gives a lower bound on the optimal value

— computes a partial assignment at which persistency
holds.



Submodular Relaxation

Let f:{0,1}" =R with f(0) =0. Instead of considering
directly the optimization problem

i, f(z)
we will construct a submodular quadratic function
g:{0,1}*" = R

satisfying

g(x,T) = f(z) Vze{0,1}".



Lower Bound

Then clearly, we obtain a lower bound

min z,y) < min x).
(x,y)E{O,l}Q”g( y) :IJE{O,l}nf()

Furthermore, given
(il?*, y*) S argmin(x,y)G{O,l}Qn g(x7 y)
we can construct a partial labelling at those indices for which

(Remember that ¢(z,7) = f(z) Vz € {0,1}".)



Best Lower Bound

In order to construct the best approximation possible, we will
solve (explicitely) the maximization part of the following
optimization problem:

max min glx,y
g:{0,1}27 SR z,y€{0,1} ()

subject to g submodular

g(x,z) = f(z) Vze{0,1}".



Plan

We will proceed as follows:

* Notation

« Symmetry

« Bisubmodularity

« Explicit solution of the maximization problem

« Persistency



Notation |
e For z€{0,1}": T=(1—21,...,1 —x,).

« For z,ye{0,1}"
x Ay = (min(wl, Y1), ..., min(x,, yn))
xVy= (max(a:l,yl), e max(a:n,yn))
Note that if 2 =15,y =17, then 2 Ay =13~ and

Ny = 1lgur.

« A pseudo-Boolean function % is submodular if and only if
h(z) + h(y) = h(z Ay) + h(z Vy).



Notation |

o« S"={(x,y) €{0,1}*"|Viec{1,....,n}: (x;,y5) # (1,1)}.

* For (z1,y1),(22,2) € 5™ :

(x1,y1) M (22, ¥2) := (1 A 22,91 A Y2),

(z1,91) U (22, y2) = ((z1 V22) A (Y1 Vy2), (Y1 V y2) A (21 V 22)).
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Symmetry

Let ¢:{0,1}*" = R, then ¢ is symmetric if

g(z,y) = 9(7, %) Y(z,y) €{0,1}*".

It turns out, that in order to solve

max min glz,y
g:{0,1}2" =R z,y€{0,1}" (& 9)

subject to g submodular
g(x,7) = f(x) Vx e {0,1}".

it is enough to optimize over symmetric functions g.
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Bisubmodularity

Lemma: Let ¢g: {0,1}*" = R be symmetric and submodular.

a) Let (z,y) € {0,1}*". Then
9(z,y) 2 g(z NG,y N T)
Thus, when minimizing ¢, it is enough to focus on vectors
in S™.
b) ¢ is bisubmodular, that is
9(z1,1) + 9(z2,92) > 9((z1,y1) U (22, 92)) + g(z1,91) [ (22, y2)).

for all (331,332), (yl,yg) < {O, 1}277,.



Explicit Solution of the max-min Problem

Assume that f(x Z citi+ Y CijTix;.

1<J
Then the symmetric, submodular function g¢:{0,1}** - R
given by

Z ci(zi +T7) + = Z o (@i + Tigy) + o (275 + ixy)
7,<j

satisfies ¢(z,7) = f(z) and it gives an optimal submodular
relaxationto f.

Here, c;; = —min(c;;,0), ¢ = max(cg;,0).



Partial Assignment from Roof Dual

Let (z%,y") € S" be a solution of the roof dual optimization
problem

min T,Y).
(w,y)G{O,l}Q”g( 2

Then we construct a partial assignment as follows:

« Let Sc{1,...,n} be defined by
S={ire{l,....n} [ (z7,y7) # (0,0)}

« Define zs €{0,1}° by (zs); =2}, i€ S.



Persistency

Theorem: Weak persistency holds at zg, that is, there exists
an extension z € {0,1}" of zs with

z € argmin,, f(x).



Summary

« Given an arbitrary quadratic pseudo-Boolean function in
n variables, there exists a submodular function ¢ in 2n

which leads to an optimal lower bound on the original
function.

A minimizer of ¢ can be computed using graph cuts as
seen in the last lecture.

 From a minimizer of g, a partial assignment for the original
optimization problem can be obtained. Weak persistency
holds for this partial assignment.



