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Plan for Today

1. From Image Segmentation to Graph Cuts
2. Min-Cut and Max-Flow Problem
3. Augmenting Path Algorithm by Ford and Fulkerson



Image Segmentation

Decompose an image into foreground (lion) and background
(forest)
image courtesy of C. Nieuwenhuis
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Reminder of Last Lecture

We have seen that MAP inference in a Markov
Random Field (MRF) model for binary image
segmentation leads to an optimization problem
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Networks

Definition: A network N = (V, E, s, t, ¢) consists of
« a directed graph (V,E)
 asources € Vandasinkt eV (meaning that all

edges adjacent to s are outgoing edges and all
edges adjacent to t are incoming edges)

* a non-negative capacity functionc : E — R,




Cut

Definition: Let N = (V, E, s, t, u) be a network.

* An s-t-cut on N is a partition of V into two disjoint
subsets Sand T suchthats e Sandte T.

* The cut set C of an s-t-cut is the set of edges (p,q)
withpeSandqgeT

s-t-cut




Minimal Cut

* The cost of an s-t-cut (S, T) with cut set C is given by

C(S.T) = Sees U(e).
« A cutis minimal if it has minimal cost among all cuts.

9 min cut (has cost 9)
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From Image Segmentation to Graph Cuts |

(a) A graph G
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From Image Segmentation to Graph Cuts |l

More formally, given an image and the corresponding
(4-neighborhood-) graph, we construct a network N =
(V, E, s, t, u) by introducing

« a source s (representing the object/foreground) and
a sink t (representing the background)

 directed edges starting in s ending in p and starting
iIn p and ending in t for all pixels p (t-links)

 directed edges starting in p and ending in q for all
pixels p and all neighbors q of p (n-links)

« appropriate capacities u (to be defined below)



Optimization Problem

* Given a minimum cut in the network described
above, we can define a segmentation x by setting

1 ifGg)es
Y0 if (4,5) eT

* Recall that we aim at solving the optimization
problem
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Optimal Segmentation = min-cut

Theorem (Boykov, Jolly): Let V=S \cup T be a
minimal cut in the image graph constructed as above.
Then the induced segmentation x is a global minimizer
of the optimization problem
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Network Flow

Definition: Let N = (V, E, s, t, ¢) be a network. A flow
in N is amap f: E — R, which satisfies

 (capacity constraints) for all e € E: f(e) < c(e),
 (flow conservation) for all nodes v € V\{s,t}:

quv vaw—()
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Value of Flow

 Intuition: We pump water from the source to the
sink. The value f(e) is the amount of water wich
flows through edge e.

* The value of a flow f is the amount of water being
transported from the source to the sink:

fl= > f(s,v).

(s,w)EE



Max-Flow-Problem

Problem: Find the maximal flow f through N.

It turns out that the max-flow problem is equivalent to
the min-cut problem.



Weak Duality

Lemma: Let f be a flow in N, let (S,T) be a cut. Then
[fl < (S, T).

Proof: We have

f] = > f(u,v) — > flv,w)
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=c(S,T).

The Lemma implies that
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Strong Duality

Theorem (Ford-Fulkerson "56, Elias-Feinstein-
Shannon '56): Let f be a maximum flow in N, let (S,T)
be a minimal cut. Then

|f] =¢(S,T).

This theorem is usually called min-cut-max-flow-
theorem. We will see the proof below.
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Residual Network

Definition: LetN = (V, E, s, t, c) be a network and f a
flow through N. The residual network N; = (V;, E;, s, t,
C;) is defined by
* the set of vertices V; =V, the source s; and the sink
t;,
* the set of edges
Er={ec E|f(e)<cle)}u{e ! |ec Eand f(e) > 0},

* the capacities

crle) = {c(e) — f(e) if f(e) < c(e)
d fle ) if e7! € E and f(e™!) > 0.



Augmenting Path

Definition: Let N = (V, E, s, t, c) be a network with flow
f. An augmenting path for f is a path with no cycles
connecting s to t in the residual network N;.



Key Observation

 Let P C E be an augmenting path for a flow f.

* Letmp=min,_pcHe) > 0.

* Then we can define a flow f; with |f5| = |f| + mp by
setting fore € E

(f(e) ife ¢ P
fr(e)=<¢ fle)+mp ifeec ENP
| f(e)—mp ife'€eEyNP




Augmenting Path Algorithm

Based on this observation, the following algorithm,
proposed by Ford and Fulkerson is very natural:

1. Setf,=0.

2. As long as there exists an augmenting path P in N;
— replace f with f;
— search an augmenting path P in NfP

3. Return f;



Ford-Fulkerson Theorem

Theorem (Ford-Fulkerson "56): The following are
equivalent for a flow f in N:

a) fis maximal.
b) There is no augmenting path in N_f.
c) There exists a cut (S,T) in N of cost ¢(S,T) = |f].



Strong Duality

Corollary 1 (Strong duality): We have

max |f| = min c(S,T).
f flow in N (S,T) cut in N

Corollary 2 (Partial correctness of Ford-Fulkerson
algorithm): If the augmenting path algorithm halts, it
returns a maximal flow.



Does the Augmenting Path Algorithm Halt?

 If N has integer capacities, then the flow increases in
each iteration by at least 1. Thus, the algorithm halts

In this case.
« This implies that it also halts in the case of rational
coefficients.

* In general, there are examples for which it does not
halt.



Dinic and Edmonds-Karp Algorithm

« Avariant of the augmenting path algorithm has been
proposed by independently by Dinic and by
Edmonds and Karp.

* The key issue is to search for the shorthest
augmenting path (e.g. using a breadth-first search).



Polynomial Time

Theorem (Dinic 70, Edmonds-Karp "72): If in each
iteration the augmenting path of shortest length
(=number of edges) is chosen, then the algorithm
terminates in polynomial time.
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Remarks

* Boykov and Kolomogorov have proposed an
alternative augmenting-path-style algorithm which is
not guaranteed to finish in polynomial time but which
is typically more efficient for image processing
graphs.

» Kolmogorov and Zabih have studied which quadratic
pseudo-boolean energies can be solved via graph
cuts other than image segmentation. It turns out that
the energy has to be submodular. We will come to

this in a later lecture.



Summary

Binary image segmentation can be reformulated as
a graph cut problem.

Finding a minimal cut is equivalent to finding a
maximum flow.

The augmenting path algorithm tries explores
iteratively new paths to pump more flow through a
network.

If shortest augmenting paths are chosen, the
algorithm returns a maximum flow in polynomial
time.



