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Plan for Today 

1.  Standard Form of Linear Programs 
2.  Convex Polyhedra and Their Vertices 
3.  The Simplex Algorithm 
4.  Duality 
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Definition Linear Program 

Definition: A linear program is an optimization 
problem of the form 
 
 
 
(1 ≤ i ≤ m, 1 ≤ j ≤ l) where all functions f, gi and hj are 
linear. 
 
Example:  
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Towards the Standard Form I 

Linear Optimization Function 
 
 
Linear Equality Constraints 
 
 
 
Linear Inequality Constraints 

Combinatorial Optimization in Computer Vision - Linear Programming 4 



Towards the Standard Form II 

Aim: Introduction of slack variables in order to get 
constraints of the standard form 
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Towards the Standard Form III 

Introduce slack variables y1 ≥ 0, ..., yl ≥ 0 to 
reformulate the inequality constraint Bx ≤ c as 
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Towards the Standard Form IV 

Decompose x in x+ + x- with 
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Standard Form of LP 

Proposition: Any linear program is equivalent to a 
linear program in standard form 
 
 
 
 
Remark: 
•  standard form useful for studying LPs 
•  In practice slack variables can be expensive and are 

often avoided. 
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Plan for Today 

1.  Standard Form of Linear Programs 
2.  Convex Polyhedra and Their Vertices 
3.  The Simplex Algorithm 
4.  Duality 
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Feasible Set of LPs 

Plan 
•  feasible set of LP = polyhedron 
•  vertices of polyhedra 
•  If an LP has a minimum, then it is attained at a 

vertex. 
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Polyhedra 
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Feasible set of LP is a polyhedron: 

M 

A1 x = b1 

A2 x = b2 

bounded polyhedron 

A1 x = b1 

A2 x = b2 

M 

unbounded polyhedron 



Vertices 

Definition: Let M ½ Rn be a convex set. A point x 2 M 
is a vertex if it does not lie on a line segment in M, that 
is 
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Characterization of Vertices I 

Let x 2 M. Let I_x be the set of indices of non-zero 
entries of x 
 
 
 
Example: 
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Characterization of Vertices II 

Denote by Ai the i-th column of A. Then 
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Characterization of Vertices III 

Notation: Let x 2 M, let l = |Ix|. 
•  For a (m £ n)-matrix A, we denote by Ax the (m £ l)-

matrix consisting of the columns with indices in Ix 

•  For a vector y 2 Rn we denote by yx 2 Rl the vector 
consisting of the entries with indices in Ix 
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Characterization of Vertices IV 

 
 
 
Proposition: The following are equivalent 
a)  x is a vertex of M 
b)  Aj1, ..., Ajl are linearly independent 
c)  Ax has full rank: 
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Proof I 

•  Items b) and c) are equivalent by definition. 
•  To prove b) ) a) we prove (¬ a)) ) (¬ b)).  

 
Assume that x is not a vertex of M. Then there exist 
y ≠ z 2 M and ¸ 2 (0,1) with x = ¸ y + (1-¸) z.  
 
Then Iy-z ½ Ix , because xj = 0 ) yj = 0 and zj = 0 
(use that y, z ≥ 0). Since (y-x) ≠ 0, we get (y-z)x ≠ 0.  
 
But then 0 = b-b = A(y-z) = Ax (y-z)x. With (y-z)x ≠ 0, 
this implies that the columns of Ax are linearly 
dependent. 
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Proof II 

To prove a) ) b) we prove (¬ b)) ) (¬ a)). 
 
Assume that the columns of Ax are linearly dependent. Let y‘ 2 Rl 
non-zero with Ax y‘ = 0. 
 
Let y 2 Rn with Iy ½ Ix and yx = y‘. Then Ay = 0. Let ² > 0 be small. 
Let x²+  = x + ² y and x²- = x - ² y. 
 
Then Ax²+ = b and x²+  ≥ 0 for ²  
sufficiently small. ) x²+ 2 M. 
Similarly x²-  2 M. 
 
But x = ½ x²+ + ½ x²- , which implies 
that x is not a vertex. 
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Consequences I 

Corollary 1: The polyhedron M has at most finitely 
many vertices. 
 
Proof: Let x be a vertex of M. Then Ax has maximal 
rank and consequently xx is the uniquely determined 
solution of Ax xx = b. Thus, Ix determines x uniquely. 
 
The corollary follows from the fact that there are only 
finitely many subsets I ½ {1,...,n}. 
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Consequences II 

Corollary 2: If M is non-empty, then M has a vertex. 
 
Proof: Let x 2 M with |Ix| minimal. We will show that x is a vertex. 
If x = ¸ y + (1-¸) z for y ≠ z 2 M, then Iy, Iz ½ Ix.  
 

W.l.o.g. assume that (y-z)x has a positive entry. 
Define x²  = x + ² (y – z) 2 M.  
 
Choose ² in such a way that one entry  
of (x²)x is 0. 
 
Then x² 2 M and |Ix²| < |Ix|. Contradiction. 
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Consequences III 
Corollary 3: If f(x) = p>x attains a minimum on M, then it attains 
the minimum at a vertex of M. 
 
Proof: Let m = minx 2 M p>x. Choose u 2 M with p> u = m such 
that |Iu| is minimal, i.e.  

|Iu| = min{ |Iv| : v 2 M, p>v = m}.  
 

If u was not a vertex of M, we could construct as above v ≠ w 2 
M and ¸ 2 (0,1) with u = ¸ v + (1-¸) w and |Iv| < |Iu| 
 
But then f(u) = ¸ f(v) + (1-¸) f(w). By minimality of f(u), we get f(u) 
= f(v) = f(w). 
 
Contradiction to the minimality of |Iu|. 
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Summary on Polyhedra 

Alltogether, we have proved 
 
Theorem:  
•  If the polyhedron M is non-empty, then it has at least 

one vertex. There are only finitely many vertices.  
•  If the linear program admits a minimum over M, then 

this minimum is attained at a vertex of M. 
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Solution strategy: Search the vertices of M 



Polyhedra as Simplices 

One can prove even more. 
 
Theorem: Let M ½ Rn be a polyhedron. Assume that M 
is bounded. Let v1,...,vk be the vertices of M. Then M is 
the convex hull of ist vertices 

M = conv(v1,...,vk). 
In this case the linear program takes a minimum on M. 
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Plan for Today 

1.  Standard Form of Linear Programs 
2.  Convex Polyhedra and Their Vertices 
3.  The Simplex Algorithm 
4.  Duality 
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Basic Idea 

Input: LP in standard form 
 
 
 
 
Idea: walk through the vertices of the polyhedron  
M = {x 2 Rn | Ax = b, x ≥ 0}. Decrease the value of the objective 
function in each step. 
 
Phase I: Find a starting vertex x of M. 
 
Phase II: Determine an edge e connecting x with a neighbor 
vertex such that the objective function decreases along e. 
Repeat this step until convergence. 
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Phase I 

To find a starting vertex, we solve an auxiliary LP. 
If b ≥ 0, we use 
 
 
 
 
 
If some bj ≤ 0, we multiply the corresponding line in A 
with -1 and change bj into –bj. 
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Phase I (continued) 

•  A starting vertex for the auxiliary LP (ALP) 
 
 
 
 
 
 
 
 
 
is (x0,z0) =  (0,b).  

•  We solve (ALP) by stepping to Phase II with this starting 
vertex. 

•  A basic solution (i.e. a solution which is a vertex) of (ALP) is a 
starting vertex for the original LP. 

•  If (ALP) is not solvable, then the orginal LP is not solvable.  
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Phase II 

In Phase II we have to walk along edges through the 
vertices of M = {x 2 Rn | Ax = b, x ≥ 0} and to 
successively decrease the value of the objective 
function. 
 
To do so, we use the characterization of vertices x by 
their index set Ix.   
 
Recall that the columns of Ax are linearly independent 
if x is a vertex. 
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Phase II (continued) 

•  For each vertex x, choose a maximal set I ½ {1,...n} such that  
–  the columns of AI are linearly independent and  
–  Ix ½ I. 
(Note that |I| = rk(A).) 

 
•  Conversely, given I ½ {1,...,n} with |I| = rk(A) such that the columns 

of AI are linearly independent, consider the linear equation AI y = b. 
If there is a solution y‘ of this system with y‘ ≥ 0, then y‘ can be 
extended by zeros to a vertex y of M with Iy ½ I. 

•  If a vertex x satisfies |I_x| = rk(A), then the basis set I is uniquely 
defined. Such a vertex is called non-degenerate. 
If |I_x| < rk(A), there could be several basis sets I. Such vertices are 
called degenerate. In the simplex algorithm one has to take care to 
avoid cycling caused by degenerate vertices. 
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Phase II (continued) 

Assume we are at vertex x and we have chosen a 
basis set I. To pass to a neighboring vertex y two 
choices have to be made: 
 
•  incoming index: choose j 2 {1,...,n} with j ∉ I. 
•  outgoing index: choose k 2 I. 

Then replace k by j: I‘ = (I \ {k}) [ {j}. 
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Phase II (continued) 

•  Algorithmically, this comes down to solving the 
equation AJy = b. This can be done with a warm 
start, using that the equation AIx = b has been 
solved before. 

•  In practice, the linear program is written down in a 
so-called tableau. Solving the equation AJy = b is 
then achieved by performing elementary Gauss 
elimination steps. 

•  The choice of j and k is guided by two principles 
–  decrease the objective function 
–  ensure that y is feasible, i.e. that y ≥ 0 
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Some Facts 

•  If an appropriate strategy for the choice of j and k is 
chosen, the simplex algorithm terminates. This 
means that it either finds a solution of the LP after 
finitely many steps or it detects that the LP is 
unfeasible or unbounded. 

•  The worst case of the algorithm is exponential in the 
problem size. 

•  In practice, the simplex algorithm is very performant 
and it is frequently used. 

•  The ellipsoid method, proposed in 1976/77, was the 
first polynomial time algorithm for Linear 
Programming. 
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Duality 

•  For every LP there is an associated dual LP. 
•  Solving the LP is equivalent to solving the dual LP. 
•  We will first see duality for LPs in standard inequality 

form. 
•  Then in a second step we derive duality for LPs in 

standard equality form (i.e. in standard form as we 
have seen in 1.). 
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Symmetric Duality for LPs in Standard 
Inequality Form  

Consider the following LP in standard inequality form: 
 
 
 
 
The associated dual LP is 
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Weak Duality 

Theorem: Let x 2 Rn be feasible for the primal LP, let  
y 2 Rm be feasible for the dual LP. Then  
 
 
Proof: By primal feasibility of x, we have b ≤ Ax, by 
dual feasibility of y, we have p ≥ A>y. Using x ≥ 0 and  
y ≥ 0, this implies 

Combinatorial Optimization in Computer Vision - Linear Programming 36 



Strong Duality 

 
 
 
Theorem: If a standard inequality LP is bounded and 
feasible, then so is its dual. Denote by x* and y* the 
solutions of the primal resp. the dual problem. Then 
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Duality for LPs in Standard Equality Form I 

Consider now a LP in standard equality form 
 
 
 
 
This can easily be transformed to a LP in standard 
inequality form 
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Duality for LPs in Standard Equality Form II 

The dual LP of  
 
 
 
 
is given by 
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Duality for LPs in Standard Equality Form III 

This last problem 
 
 
 
 
can be simplified by introducing z = y1 – y2. The 
resulting LP is 
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Summary 

•  We have seen that any LP can be written in 
standard form. 

•  The feasible set of an LP is a convex polyhedron. 
Such a polyhedron can be empty, bounded or 
unbounded. 

•  If the LP has a solution, the it has a solution which 
lies on a vertex of the polyhedron. 

•  The simplex algorithm searches the vertices of a 
polyhedron for the optimal solution. 

•  The dual LP associated with an LP is equivalent by 
the Strong Duality Theorem. 
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