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Definition of Integer Linear Program 

Definition: An Integer Linear Program (ILP) is an 
optimization problem of the form 
 
 
 
 
 
Remark: Note that the only difference to LPs is by the 
additional constraint             While LPs are solvable in 
polynomial time, the general ILP is NP-hard. 
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Example: Linear Assignment Problem 

Input: Set    s                                           ,  cost matrix    , with      
specifying the cost for transporting     to    
 
Wanted: Transport plan,  that is a bijection 
                                     which minimizes the cost  
 
ILP formulation: 
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LP relaxation of ILP 

The LP relaxation of an ILP  
 
 
 
 
is defined by dropping the integrality constraint. 
 
The so-resulting LP is solvable in polynomial time and 
gives a lower bound for the ILP. 
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When is the LP relaxation equivalent? 

Definition: Let                                             be a polyhedron. 
•  Then      is rational if      and     are rational. 
•      is integral if all its vertices lie in    . 

 
 
 
 
 
If a polyhedron is integral, then solving an ILP over      is 
equivalent to solving a LP over     . 
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Unimodular Matrices 

Definition: Let               be an integer-valued matrix. 
•  Assume that      has full row rank. Then     is unimodular if 

every non-singular            submatrix of      has determinant 
equal to 1 or -1. 

•     is totally unimodular if every quadratic submatrix of     has 
determinant equal to 0, 1 or -1. 

This very technical condition turns out to be initmately related 
to integral polyhedra. The condition on the determinant 
ensures by Cramer‘s rule that matrices are invertible over     .  
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Unimodular Matrices and Integer Polyhedra 

Theorem: Let              be an integer-valued matrix.  
a)  Assume that     has full row rank. Then    is unimodular if 

and only if for all            the polyhedron 
                                             is integral. 

b)  (Hoffmann-Kruskall) The matrix      is totally unimodular if 
and only of the polyhedron                                             is 
integral. 

Note that unimodularity and total unimodularity is more than 
what is needed for particular ILPs to be solvable efficiently. 
Typically, one is only interested in the integrality of polyhedra 
for one sepcific value of           .  
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Network Incidence Matrix 

Consider a network                         . 
 
 
 
 
 
 
The incidence matrix                                           is defined by   
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Ford-Fulkerson-Algorithmus

Betrachte folgendes Netzwerk N. Wir beginnen mit dem Fluss f0 = 0:
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Incidence Matrix is Totally Unimodular 

Lemma 1: The incidence matrix     is totally unimodular.  
Proof: The Lemma follows from Lemma 2. 
 
Lemma 2: Let                           be a matrix. Assume that each 
column of     contains at most one -1 and one +1. Then     is totally 
unimodular.  
 
Proof: Induction on the size    of square submatrices     of    . 
           okay. 
           If there exists a column with at most one non-zero entry, 
develop the determinant by this column and use the induction 
hypothesis. Otherwise all columns sum up to zero and the 
determinant is zero. 
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Network Flows 

Recall that a flow in                          is given by a function  
                    satisfying  
 
 
 
 
 
The value of a flow is given by 
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Max-Flow as Linear Program I 

Let                     be the vector defined by 
 
 
 
(in other words,     indicates outgoing edges from the source. 
Note, that      is the    -th row of the incidence matrix    .) 
 
 
Let      be the reduced incidence matrix, defined by removing 
the rows corresponding to the source      and the sink    .  
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Max-Flow as Linear Program II 

Then the max-flow problem can be formulated as the 
following Linear Program 
 
 
 
 
In order to dualize this LP, we transform it into standard 
inequality form: 
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The Dual LP to Max-Flow I 

 
By LP duality, the dual to the max-flow problem 
is given by 
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The Dual LP to Max-Flow II 

This dual LP can be reformulated to the following equivalent 
LP 
 
 
 
 
 
Next, we recall that       coincides with the    -th row of    . In 
particular, if we extend      by      in the     -th entry and by     in 
the     -th entry, then we obtain a vector              with  
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The Dual LP to Max-Flow III 

This allows to reformulate the dual LP to max-flow as follows: 
 
 
 
 
 
We will now see that this dual LP is equivalent to the min-cut 
problem. 
 
To start with, define for each feasible                         an s-t-cut 
by setting                                                              . Then clearly                                                                
                   and                 , so that          is an s-t-cut.    
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The Dual LP to Max-Flow IV 

Next, we note that by total unimodularity of     also the matrix  
                              is totally unimodular. As a consequence, 
the polyhedron  
 
 
 
is integral. This implies that the polyhedron 
 
 
is integral. 
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The Dual LP to Max-Flow V 

This implies that the dual LP 
 
 
 
 
 
has an integral solution vector                                 .  
 
Next, consider the     -th component of the constraint (where  
                          ): 
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The Dual LP to Max-Flow VI 

Minimizing with respect to     and taking into account that  
         we see that  for fixed     an optimal    is given by   
 
 
Thus, we can interpret the dual LP as a labelling problem, 
where we search for a function                 , whose “weighted 
derivative“  
 
 
is minimal and which satisfies the “boundary condition“ 

Combinatorial Optimization in Computer Vision - Integer Linear Programming 21 



The Dual LP to Max-Flow VII 

This labelling problem is equivalent to the min-cut problem: 
It is certainly most economic to employ only the labels 0 
and 1 and to change labels as rarely as possible. Moreover, 
if only these binary labels are used, for optimal    the cost 
         is the cost of the cut induced by    .  
 
Thus the LP dual to the max-flow problem 
 
 
 
 
is the min-cut problem. 
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Min-Cut Max-Flow Duality 

Theorem:  
•  The min-cut and the max-flow problems are dual 

linear programs. In particular, the cost of the 
minimum cut coincides with the value of the 
maximum flow. 

•  The polyhedron corresponding to the LP relaxation 
of the min-cut problem is integral. 
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The 3D Matching Problem 
The 3D Shape Matching Problem

2
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Problem: Find a correspondence between the two shapes, i.e. 
for each point on the lion find a corresponding point on the cat. 



The 3D Matching Problem 
The 3D Shape Matching Problem

I meaningful correspondences
I geometrically consistent matching

3
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Desired properties:  
•  Preservation of orientation 
•  Meaningful correspodence 



Mathematical Model I Optimizing in the Set of Diffeomorphisms

' : X ! Y

'⇤ = argmin'2Diff+(X ,Y ) E(') + E('�1)

5
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Mathematical Model II 

•  Mathematically, we search for an optimal orientation preserving 
diffeomorphism                   . 

•  We choose a physical model: We search for the deformation which 
causes minimal physical work. One can imagine this model as 
putting a glove over a hand – if all fingers are put in the right place, it 
costs less energy than if something goes wrong. 

•  The precise term for this energy, the thin-shell-energy, has been 
derived by Koiter in the 70‘s: 

•  Finally, we symmetrize the problem by considering 

Combinatorial Optimization in Computer Vision - Integer Linear Programming 28 



Representation of a Diffeomorphism by its 
Graph 
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Definition and Proposition: Let                  be a  
diffeomorphism. The graph of      is defined as the set  
                                                 This set has the following 
properties: 
i.     is a differentiable, connected, closed surface in the  

product space           .  
ii.  The natural projections                   and  

are both diffeomorphisms. 
iii.  The two orientations which     naturally inherits from  

    and      coincide.  
 
  

Shape Matching as Minimal Surface Problem 



Visulization of Graph The Discrete 2D Case

�⇤ = argmin� E(�).

Global optimium in subcubic-time for the 2D case: Schmidt,
Farin, Cremers [ICCV 2007]

9
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Example: Matching of the two red curves can be formulated as searching  
for the blue path. 



Discrete Setting: Matching of Triangle 
Meshes 

3D Shape Matching

X Y

11
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Discrete Setting: Matching of Triangle 
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3D Shape Matching

X Y
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Discrete Setting: Matching of Triangle 
Meshes 3D Shape Matching

X Y

13
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Path to ILP Formulation 

We will now discretize graph surfaces. Therefore we will see 
•  a set      of „product triangles“ which are building blocks for 

discrete graph surfaces (similarly to the edges in the 
search of the blue path in the torus). 

•  discrete graph surfaces = indicator vectors                   
•  discrete versions of constraints i., ii., iii. Then the search 

space will be the set of subsets of     which satisfy the 
discrete constraints i., ii., iii. 

•  discrete energy vector             , which discretizes Koiter‘s 
thin-shell energy. 
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Product Triangles as Optimization Variables 
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Product triangles as optimization variables. A product triangle     has the 
interpretation of setting into correspondence vertices       with      .   



Stretching and Bending 
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Boundary Operator 
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Boundary operator ensures geometric consistency. It is required that each 
product edge appears as often negatively oriented as it appears positively 
oriented in a discrete graph surface. The boundary constraint discretizes  
constraint i. 



Projection Constraints and Discrete Energy 

•  Projection constraints ensure that each triangle on     and 
on      is hit exactly once. These discretize constraint ii. 

•  Constraint iii. is built-in and does not need a discretization. 
•  Discrete thin-shell energy associates with each product 

triangle the physical deformation cost. This leads to a 
vector  
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ILP Formulation for 3D Shape Matching 

Alltogether, this approach rephrases 3D Shape Matching as 
the following Integer Linear Program 
 
 
 
 
 
 
 
We solve the relaxed version. Unfortunately, in this case the 
polyhedron is not integral. 
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Results 
Results

Articulation (Bending)

20
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Results 
Results

Partial Matching

21
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Summary 

•  Integer Linear Programs are Linear Programs with an 
additional integrality constraint. 

•  While LPs are solvable in polynomial time, the general ILP 
is NP-hard. 

•  If the constraint matrix is totally unimodular, the polyhedron 
is integral. In this case, LP relaxation is equivalent to ILP. 

•  The max-flow min-cut duality can be seen as dual LPs. The 
corresponding constraint matrix is totally unimodular. 

•  Geometrically consistent 3D shape matching can be casted 
as ILP. 
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