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The Stereo Problem

Goal of Stereo Vision: Given two input images from two
different perspectives, infer 3D coordinates of objects in the
iImage.

Left view Right view
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Epipolar Plane

Given a pixel x_ in the left image, the epipolar plane is the
plane spanned by the line between the camera centers and
by the line between x, and O,. The main task in stereo vision
Is to determine the correct correspondence pixel xg on the red
line, the so-called epipolar line.

Left view Right view
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Image Rectification

We apply image
rectification. After that
preprocessing step

A which depends on a
| good calibration of
the cameras, the

epipolar lines are

2) horizontal and we

/'Z‘\ o A have to determine the
pixel disparity
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Determination of Disparity

The disparity d:Q — R tells us, that for a given pixel in the left
image pr = (zr,yr) the corresponding pixel in the right image
is given by pr = (zr +d(pL),yr).

In the variational setting the disparity is estimated by
minimizing an energy similar to

E(d) — Edata(d) + Ereg(d)

:/ ’IL(ZUL,?JL)—IR($L+d,yL)’2+/ Vd.
Q Q



Depth from Disparity

* The depth can be easily determined from the disparity if the
camera parameters are known. It turns out that depth and
disparity are inversely proportional.

* |n the sequel we are going to learn an algorithm which can
solve energy minimization problems of the above type
globally in polynomial time.
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Multilabel Problems with Linearly Ordered
Label Space

Consider a symmetric, directed graph G = (V, E). In the
following we study the inference problem for a Markov
Random Field X = (X,),ev On G =(V,E).

Let

« L={1,...N} be alinearly ordered set of label in which the
MRF takes values

* ¢:Z— R be aconvex and symmetric function, that is

- g'(2) ={9(z+1) —g(2)} —{9(2) —g(z — 1)} >0 forall zeZ
— g(2) =g(—2) forall z€Z

* h,:L — R beafunction foreachveV
e a4y, > 0 be constants.



MRF Inference

Finally assume that the MRF X has the Gibbs potential
E(zx) = Z ho(xy) + Z Qg (Ty — Toy)-

veV VAW

Then, the MRF MAP-inference problem for X is the
optimization problem

r* = argmin_ ~v| E(z).

We will now see, that due to the convexity of g this problem
Is tractable.
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Overview

Idea: Construct a network N = (W, F,s,t,c) such that

a) There is a bijection

{cuts of N} «— {configurations of MRF X}

b) The cost of acutin N is the same as the energy of the
corresponding MRF configuration (up to a constant).

Once, this network is constructed, the MRF inference problem

Is reduced to a min-cut problem which can be solved in
polynomial time.



Definition of the Network

The network is defined by introducing
* Vertices

W=(VxL)U{s,t}={uy,;|veV,leLl}U{st}.

Besides source and sink, there are indicator vertices for
each possible label assignment.

 Edges
F=F;UF.UF,

where F; is the set of data edges, F. the set of constraint

edges and F, is the set of penalty edges (all defined
below)

« Capacities defined together with the edges.



Indicator Vertices for Label Assignments
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Data Edges

Data egdes connect the label vertices u,; of one given
,ground vertex” v € V as follows:

* u,1 IS connected with the source s
* wu,,; is connected with w, ;41 If 1<I<N-1
* u, n IS connected with the sink t.

Thus, the data edges are given by

Fp = Upev D,y
with

FD,’U — {(57 uv,l)a (uv,la uv,Z)a SRR (uv,Na t)}



Capacities of Data Edges

The capacities of the data edges corresponding to ,ground
vertex® veV

FD,’U — {(57 uv,l)a (uv,la uv,Z)a R (uv,Na t)}
are defined as follows:

e C(S,Uy 1) =00

o c(Uy, Uy iyl



Interpretation of a Cut in the Network |
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Interpretation of a Cut in the Network ||

Note that for each v € V' at least one edge of the form

(uvi,uu 1) OF the edge (un,t) is part of the cut (because
otherwise the source is connected to the sink).

Convention: If edge (u.:, uvi41) is part of the cut, we interpret
the cut as assigning label to vertex . If the edge (un,?) is
part of the cut, we interpret, this as assigning label N to the
vertex.

This convention only makes sense, if no more than one edge
from Fp, is part of the cut. This will be ensured by the
constraint edges.



Constraint Edges |

Constraint edges ensure that in every column only one edge
belongs to a cut. They are defined as follows:

Fc — U'UGVFC,'U

with
ch = {(’LLU77;_|_1,’LLU77;) | 1= 1, ... N — 1}

The capacity of constraint edges is set to infinity:

C(“v,i—l—la uv,i) = OQ.



Constraint Edges I

Lemma: A cut in the network N = (W, F, s,t,c¢) Involves
more than one data edge from
FD,U — {(37 uv,l)a (uv,la uv,2)a R (uv,Na t)}

if and only if it involves a constraint edge.

The lemma shows that with the introduction of
constraint edges we have ensured that only one label
Is assigned to each ,ground vertex" by a cut of finite

cost.



Visualization of Constraint Edges
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Penalty Edges |

Penalty edges are introduced for modelling the pairwise
potential

Z O‘uvg(a}v T .I'w).

In the sequel we assume for simplicity that

oy =1

o (@) ={fle+1) = f@)} —{f(x) = f(e—1)} =0 for z ¢ 2LU{0O}
(this is no loss of generality because these values of =z do
not appear in our optimization problem)



Penalty Edges Il

Penalty edges connect label vertices corresponding to
neighboring ,ground vertices":

Fp ={(uyi,uw ;)| (v,w) € E, i,5 € L}.

To derive the correct capcities c(u.,q, uw, j), we first determine
which penalty edges are involved in a cut corresponding to an

assignment of labels.



Penalty Edges Il
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Penalty Edges |V

If (wo,iuwir1) and (uvw,j,uw,j+1) are in the cut for two
neighboring ,ground vertices” v, w, then

Uy €T for 1 >4

Uyl Uw,k) INthe cutfor [ >4k <y
Uy € S for k < j } (20,0, e ) b=

and similarly

Uy € S for [ <t

. (Uw,k» Uuyy) INnthe cut for [ <i k> j
uw,kESfork>j



Penalty Edges V

Therefore, the penalty edges lead to the following pairwise
cost for the labelling z, =i,2, =

fi,j) = Z Zc(uv,l,uw,k) + Z Zc(uw,k,uv,l).

I>i k<j 1<i k>j

In order to model our original inference problem by cuts in the
network, we need to have

g(i — 7) = f(i,j) 4+ constant independent of i, j



Penalty Edges Vi

Lemma: If the function

gi —j) = f(i,J)
is well-defined (that is, if f(¢,j) depends only on the
difference ¢ — j, then

G (i = J) = (Ui Uw,j) + (Uw,j, Uni).

In particular, since the capacities in our network are non-
negative, g is convex.

Plan: Define edge weights in such a way that f(¢,j) depends
only on i —j, then show that in this case gand g do only

differ by a constant.



Penalty Edges VI

We define capacities for the penalty edges by

1 . .
C(Up iy Unp,j) 1= 59"(Z —J).

With this definition, the capacities do only differ from label
differences. If we had an infinite label set, we could infer that

f(i,7) does only depend on i — j.

Instead of introducing additional vertices u,, for r <0, r > N
(as in depicted in (a) on the next slide), we add the
correspoding capacities c¢(uy,r, uw ;) = 2" (r — j) to edges
connecting w and s (resp. t)if »r <0 (resp.r > N).
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Penalty Edges IX

Proposition: With this choice of capacities of the penalty
egdes, the function (i —j) := f(4,4) is well-defined.
Furthermore, it is a convex and symmetric function which
satisfies

J"(z) =¢"(x) Vx € Z.

Therefore, g and g only differ by a constant.

The proposition shows that with Ishikawa's graph construction
our MRF-inference problem can be solved globally in
polynomial time.



