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The Stereo Problem 

Goal of Stereo Vision: Given two input images from two 
different perspectives, infer 3D coordinates of objects in the 
image.  
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Epipolar Plane 

Given a pixel xL in the left image, the epipolar plane is the 
plane spanned by the line between the camera centers and 
by the line between xL and OL. The main task in stereo vision 
is to determine the correct correspondence pixel xR on the red 
line, the so-called epipolar line. 
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Image Rectification 
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We apply image 
rectification. After that 
preprocessing step 
which depends on a 
good calibration of 
the cameras, the 
epipolar lines are 
horizontal and we 
have to determine the 
pixel disparity 



Determination of Disparity 

The disparity                 tells us, that for a given pixel in the left 
image                      the corresponding pixel in the right image 
is given by                                .   
 
In the variational setting the disparity is estimated by 
minimizing an energy similar to 
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Depth from Disparity 

•  The depth can be easily determined from the disparity if the 
camera parameters are known. It turns out that depth and 
disparity are inversely proportional. 

•  In the sequel we are going to learn an algorithm which can 
solve energy minimization problems of the above type 
globally in polynomial time. 
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Multilabel Problems with Linearly Ordered 
Label Space 

Consider a symmetric, directed graph                 . In the 
following we study the inference problem for a Markov 
Random Field                     on                  . 
Let  
•                        be a linearly ordered set of label in which the 

MRF takes values  
•                   be a convex and symmetric function, that is 

–                                                                                for all  
–                         for all  

•                    be a function for each 
•               be constants.           
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MRF Inference 

Finally assume that the MRF     has the Gibbs potential 

 
 
Then, the MRF MAP-inference problem for      is the 
optimization problem  
 
 
We will now see, that due to the convexity of       this problem 
is tractable. 
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Overview 

Idea: Construct a network                             such that 
 
a)  There is a bijection 

 
b)  The cost of a cut in      is the same as the energy of the 

corresponding MRF configuration (up to a constant). 

Once, this network is constructed, the MRF inference problem 
is reduced to a min-cut problem which can be solved in 
polynomial time. 
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Definition of the Network 

The network is defined by introducing  
•  Vertices                                 

 
 
Besides source and sink, there are indicator vertices for 
each possible label assignment. 

•  Edges  
 
 
where       is the set of data edges,      the set of constraint 
edges and       is the set of penalty edges (all defined 
below) 

•  Capacities defined together with the edges. 
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Indicator Vertices for Label Assignments 8 HIROSHI ISHIKAWA
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Figure 1: Data edges are depicted as black arrows. Four of them are in the cut here, representing the assign-
mentsX1 = 1,X2 = 2,X3 = 2, andX4 = 3. Penalty edges are represented by horizontal arrows. By crossing
consecutive penalty capacities, the cost is added linearly, realizing the prior g(x) = |x|. With more edges, any
convex g(x) can be used. Constraint edges are depicted as dotted arrows. They ensure that the assignment Xv

is uniquely determined for each v. These edges cannot be in the cut, and thus they prevent the cut from “going
back”.

over all possible pairs of v 2 V and l 2 L and subtract it from the function without changing

the optimization problem. Define a graph G = (V, E) as follows.

V = V ⇥ L [ {s, t} = {uw,i | w 2 V ; i 2 L} [ {s, t},

E = ED [ EC [ EP.

(4)

Below, each of the three subsets of edges ED, EC, EP is defined and their capacities are spec-

ified. The reader is referred to Figure 1 for illustration.
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Data Edges 

Data egdes connect the label vertices       of one given 
„ground vertex“           as follows: 
 
•        is connected with the source   
•        is connected with            if  
•         is connected with the sink   . 

Thus, the data edges are given by  
 
with 
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Capacities of Data Edges 

The capacities of the data edges corresponding to „ground 
vertex“  
 
 
are defined as follows: 
 
•          
•         
•      
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Interpretation of a Cut in the Network I 8 HIROSHI ISHIKAWA

 
t 

s 

3 

2 

1 

L 

1 2 3 4 

G 

V 

T 
S 

Cut 

Figure 1: Data edges are depicted as black arrows. Four of them are in the cut here, representing the assign-
mentsX1 = 1,X2 = 2,X3 = 2, andX4 = 3. Penalty edges are represented by horizontal arrows. By crossing
consecutive penalty capacities, the cost is added linearly, realizing the prior g(x) = |x|. With more edges, any
convex g(x) can be used. Constraint edges are depicted as dotted arrows. They ensure that the assignment Xv

is uniquely determined for each v. These edges cannot be in the cut, and thus they prevent the cut from “going
back”.

over all possible pairs of v 2 V and l 2 L and subtract it from the function without changing

the optimization problem. Define a graph G = (V, E) as follows.

V = V ⇥ L [ {s, t} = {uw,i | w 2 V ; i 2 L} [ {s, t},

E = ED [ EC [ EP.

(4)

Below, each of the three subsets of edges ED, EC, EP is defined and their capacities are spec-

ified. The reader is referred to Figure 1 for illustration.
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Interpretation of a Cut in the Network II 

Note that for each            at least one edge of the form 
                 or the edge             is part of the cut (because 
otherwise the source is connected to the sink). 
  
Convention: If edge                  is part of the cut, we interpret 
the cut as assigning label     to vertex    . If the edge            is 
part of the cut, we interpret this as assigning label      to the 
vertex. 
 
This convention only makes sense, if no more than one edge 
from           is part of the cut. This will be ensured by the 
constraint edges. 
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Constraint Edges I 

Constraint edges ensure that in every column only one edge 
belongs to a cut. They are defined as follows: 
 
 
with  
 
 
The capacity of constraint edges is set to infinity: 
 
 

Combinatorial Optimization in Computer Vision - Multilabel Problems with Linear Ordering 19 



Constraint Edges II 

Lemma: A cut in the network                        involves 
more than one data edge from    
 
if and only if it involves a constraint edge.    
 
 
The lemma shows that with the introduction of 
constraint edges we have ensured that only one label 
is assigned to each „ground vertex“ by a cut of finite 
cost.                                                             
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Visualization of Constraint Edges 
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Figure 1: Data edges are depicted as black arrows. Four of them are in the cut here, representing the assign-
mentsX1 = 1,X2 = 2,X3 = 2, andX4 = 3. Penalty edges are represented by horizontal arrows. By crossing
consecutive penalty capacities, the cost is added linearly, realizing the prior g(x) = |x|. With more edges, any
convex g(x) can be used. Constraint edges are depicted as dotted arrows. They ensure that the assignment Xv

is uniquely determined for each v. These edges cannot be in the cut, and thus they prevent the cut from “going
back”.

over all possible pairs of v 2 V and l 2 L and subtract it from the function without changing

the optimization problem. Define a graph G = (V, E) as follows.

V = V ⇥ L [ {s, t} = {uw,i | w 2 V ; i 2 L} [ {s, t},

E = ED [ EC [ EP.

(4)

Below, each of the three subsets of edges ED, EC, EP is defined and their capacities are spec-

ified. The reader is referred to Figure 1 for illustration.



Penalty Edges I 

Penalty edges are introduced for modelling the pairwise 
potential  
 
 
In the sequel we assume for simplicity that  
•     
•   

(this is no loss of generality because these values of      do      
not appear in our optimization problem)    
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Penalty Edges II 

Penalty edges connect label vertices corresponding to 
neighboring „ground vertices“: 
 
 
 
To derive the correct capcities                  , we first determine 
which penalty edges are involved in a cut corresponding to an 
assignment of labels. 
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Penalty Edges III 12 HIROSHI ISHIKAWA

Xw= j

Xv= i
uv, i

uv, i+1

uw, j

uw, j+1

v w

Figure 2: General penalty edges. Only the edges originating from the column over vertex v are shown. Edges
going from “below” uv,i+1 to “above” uw,j are in the cut, shown here as solid arrows.

edges amounts to:

f(i, j) =

iX

a=1

kX

b=j+1

c(uv,a, uw,b) +

kX

a=i+1

jX

b=1

c(uw,b, uv,a). (8)

Now, we assume that the sum f(i, j) depends only on the difference of the labels i � j.

Under this assumption we define a function g̃(x) by

g̃(i� j) = f(i, j).

Although we do not even know if there exists a capacity function c that makes the sum (8)

depend only on the difference between i and j (we will see below that it does exist,) here we

just assume such capacity does exist and derive a necessary condition.

Proposition. Assume that the function f(i, j), defined by (8) as the sum of edge capacities

between neighboring columns, depends only on the difference between i and j, and thus can

be written as f(i, j) = g̃(i� j) with a function g̃(x). Then g̃(x) is convex.
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Penalty Edges IV 

If                  and                     are in the cut for two 
neighboring „ground vertices“       , then 
 
 
 
and similarly 
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in the cut for  

in the cut for  



Penalty Edges V 

Therefore, the penalty edges lead to the following pairwise 
cost for the labelling 
 
 
 
In order to model our original inference problem by cuts in the 
network, we need to have 
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Penalty Edges VI 

Lemma: If the function  
 
is well-defined (that is, if            depends only on the 
difference        , then   
 
 
In particular, since the capacities in our network are non-
negative,     is convex. 
 
Plan: Define edge weights in such a way that           depends 
only on         , then show that in this case    and     do only 
differ by a constant.  
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Penalty Edges VII 

We define capacities for the penalty edges by 
 
 
 
With this definition, the capacities do only differ from label 
differences. If we had an infinite label set, we could infer that  
          does only depend on        .  
 
Instead of introducing additional vertices        for  
(as in depicted in (a) on the next slide), we add the 
correspoding capacities                                     to edges 
connecting     and     (resp.   ) if           (resp.         ) . 
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Penalty Edges VIII 
14 HIROSHI ISHIKAWA

(a) (b)

Figure 3: (a) Each penalty edge has a capacity that depends only on the label change. (b) Contributions from
out-of-bounds edges are consolidated.

would only depend on the difference i � j. We know that the sum is finite because of the

assumption that the second derivative of g(x) vanishes for sufficiently large |x| and we can
thus ignore edges with a large label difference.

The columns, however, have top and bottom. That is, for this argument to work, we have

to add the capacities of edges that have an end that is out of bounds (see Figure 3 (a).) The

problem is that some edges whose capacities are necessary to make the sum depend only

on the label change do not actually exist. Note however that there are only a finite number

of such edges because the capacity is zero for sufficiently large label differences. Therefore

we can just add these capacities to those of other edges that do exist (Figure 3 (b)) without

changing the total cost of any cut. That is, whenever vertices of the form uv,i with i > k

appear, we replace them by t and add the capacity to the existing edge; similarly, we replace

uv,i by uv,1 if i < 1. Note that this does not mean that the result is approximate; the total cost

of any cut stays the same.

Thus we can make the sum f(i, j) in (8) depend only on the difference i�j. This realizes
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Penalty Edges IX 

Proposition: With this choice of capacities of the penalty 
egdes, the function                           is well-defined. 
Furthermore, it is a convex and symmetric function which 
satisfies 
 
Therefore,     and     only differ by a constant. 
 
 
The proposition shows that with Ishikawa‘s graph construction 
our MRF-inference problem can be solved globally in 
polynomial time. 
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